【题目】如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.
【答案】⊙O的半径为6.25.
【解析】
首先连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD中,过A,D两点的⊙O与BC边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,然后设⊙O的半径为x,则OE=EF-OE=8-x,利用勾股定理即可得:(8-x)2+36=x2,继而求得答案.
连接OE,并反向延长交AD于点F,连接OA,
∵BC是切线,∴OE⊥BC,∴∠OEC=90°,
∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,
∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,
设⊙O的半径为x,则OE=EF﹣OE=8﹣x,
在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,
解得:x=6.25,∴⊙O的半径为:6.25.
科目:初中数学 来源: 题型:
【题目】已知,如图,在中,,于,的平分线交于,交于,的角平分线交于,交于.
(1)求证:;
(2)判断与的位置关系,并说明理由.
(3)再找出二组相等的线段:①________;②___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:正方形OABC置于坐标系中,B的坐标是(-4,4),点D是边OA上一动点,以OD为边在第一象限内作正方形ODEF.
(1)CD与AF有怎样的位置关系,猜想并证明;
(2)当OD=______时,直线CD平分线段AF;
(3)在OD=2时,将正方形ODEF绕点O逆时针旋转α°(0°<α°<180°),求当C、D、E共线时D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.
(1)求证:直线BF是⊙O的切线.
(2)若CD=2,OP=1,求线段BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,
(1)求证:DF与⊙O的位置关系并证明;
(2)求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知P是⊙O外的一点,OP=4,OP交⊙O于点A,且A是OP的中点,Q是⊙O上任意一点.
(1)如图1,若PQ是⊙O的切线,求∠QOP的大小;
(2)如图2,若∠QOP=90°,求PQ被⊙O截得的弦QB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
问题情境:
如图 1,AB∥CD,∠PAB=25°,∠PCD=37°,求∠APC的度数,小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC
问题解决:
(1)按小明的思路,易求得∠APC 的度数为 °;
问题迁移:
如图 2,AB∥CD,点 P 在射线 OM 上运动,记∠PAB=α,∠PCD=β.
(2)当点 P 在 B,D 两点之间运动时,问∠APC 与α,β 之间有何数量关系? 请说明理由;
拓展延伸:
(3)在(2)的条件下,如果点 P 在 B,D 两点外侧运动时 (点 P 与点 O,B,D 三点不重合)请你直接写出当点 P 在线段 OB 上时,∠APC 与 α,β 之间的数量关系 ,点 P 在射线 DM 上时,∠APC 与 α,β 之间的数量关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.
(1)求甲,乙两木工组单独修理这批桌凳的天数;
(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com