精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,A(-1,0),B(3,0).
(1)若抛物线过A,B两点,且与y轴交于点(0,-3),求此抛物线的顶点坐标;
(2)如图,小敏发现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;
(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CPx轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求此抛物线的解析式.
(1)设过抛物线A,B两点,且与y轴交于点(0,-3),的抛物线解析式为y=ax2+bx+c,
把A(-1,0),B(3,0),点(0,-3)代入
a-b+c=0
9a+3b+c=0
c=-3

解得
a=1
b=-2
c=-3

故此抛物线的解析式为y=x2-2x-3,顶点坐标为(1,-4);

(2)由题意,设y=a(x+1)(x-3),即y=ax2-2ax-3a,
∴A(-1,0),B(3,0),C(0,-3a),M(1,-4a),
∴S△ACB=
1
2
×4×|-3a|=6|a|,
而a>0,
∴S△ACB=6a.
作MD⊥x轴于D,
又S△ACM=S△ACO+SOCMD-S△AMD=
1
2
•1•3a+
1
2
(3a+4a)-
1
2
•2•4a=a,
∴S△ACM:S△ACB=1:6;

(3)①当抛物线开口向上时,
设y=a(x-1)2+k,
即y=ax2-2ax+a+k,
有菱形可知|a+k|=|k|,a+k>0,k<0,
∴k=-
a
2

∴y=ax2-2ax+
a
2

∴|EF|=
(x2+x1)2-4x1x2
=
2

记l与x轴交点为D,
若∠PEM=60°,则∠FEM=30°,MD=DE•tan30°=
6
6

∴k=-
6
6
,a=
6
3

∴抛物线的解析式为y=
1
3
6
x2-
2
3
6
x+
6
6

若∠PEM=120°,则∠FEM=60°,MD=DE•tan60°=
6
2

∴k=-
6
2
,a=
6

∴抛物线的解析式为y=
6
x2-2
6
x+
6
2

②当抛物线开口向下时,同理可得y=-
1
3
6
x2+
2
3
6
x-
6
6

y=-
6
x2+2
6
x-
6
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,OC=4,AO=2OC,且抛物线对称轴为直线x=-3.
(1)求该抛物线的函数表达式;
(2)己知矩形DEFG的一条边DE在线段AB上,顶点F、G分别在AC、BC上,设OD=m,矩形DEFG的面积为S,当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=
2
5
DF
,求出此时点M的坐标;
(3)若点Q是抛物线上一点,且横坐标为-4,点P是y轴上一点,是否存在这样的点P,使得△BPQ是直角三角形?如果存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,抛物线交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).
(1)求这个抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,使点P到A、C两点间的距离之和最小.若存在,求出点P的坐标;若不存在,请说明理由.
(3)如果在x轴上方平行于x轴的一条直线交抛物线于M,N两点,以MN为直径作圆恰好与x轴相切,求此圆的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点A(1,0)且与直线y=
3
4
x+3相交于B、C两点,点B在x轴上,点C在y轴上.
(1)求二次函数的解析式及函数的顶点坐标
(2)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△PAB的面积S与x之间的函数关系式,并写出自变量取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=-
3
x2-2
3
(a-1)x-
3
(a2-2a)与x轴交于点A(x1,0)、B(x2,0),且x1<1<x2
(1)求A、B两点的坐标(用a表示);
(2)设抛物线的顶点为C,求△ABC的面积;
(3)若a是整数,P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,求抛物线的解析式及线段PQ的长的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形ABCD满足,CDAB,且A、B在x轴上,点D(0,6),若tan∠DAO=2,AB:AO=1:1.
(1)A点坐标为(______),B点坐标为(______);
(2)求过A、B、D三点的抛物线方程;
(3)若(2)中抛物线过点C,求C点坐标;
(4)若动点P从点C出发沿C?B?x正方向,同时Q点从点A出发沿A?B?C方向(终点C)运动,且P、Q两点运动速度分别为
5
个单位/秒,1个单位/秒,若设运动时间为x秒,试探索△BPQ的形状,并说明相应x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏(虚线部分)围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形ABCD的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)你认为该方案是否合理?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一个中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线是一条抛物线,在平面直角坐标系中,这条抛物线的解析式为:y=-
1
12
x2+
2
3
x+
5
3

(1)请用配方法把y=-
1
12
x2+
2
3
x+
5
3
化成y=a(x-h)2+k的形式.
(2)求出铅球在运行过程中到达最高点时离地面的距离和这个学生推铅球的成绩.(单位:米)

查看答案和解析>>

同步练习册答案