精英家教网 > 初中数学 > 题目详情
如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
(1)证明:∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴△BOE≌△AOF.
∴OE=OF.

(2)OE=OF成立.
证明:∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
∴△BOE≌△AOF.
∴OE=OF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,ADBC,AD=2,BC=8,AC=6,BD=8,则此梯形的面积是(  )
A.24B.20C.16D.12

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直角坐标系中,正方形ABCD的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为1,点P为BC边上的任意一点(可与点B或C重合),分别过B、D作AP的垂线段,垂足分别是B1、D1.猜想:(DD1)2+(BB1)2的值,并对你的猜想加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在正方形ABCD中,AB=4,E为边BC延长线上一点,连接DE,BF⊥DE,垂足为点F,BF与边CD交于点G,连接EG.设CE=x.
(1)求∠CEG的度数;
(2)当BG=2
5
时,求△AEG的面积;
(3)如果AM⊥BF,AM与BC相交于点M,四边形AMCD的面积为y,求y关于x的函数解析式,并写出它的定义域.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD中,∠DAF=35°,AF交对角线BD于E,交CD于F,
(1)说明AE=EC;
(2)求∠BEC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,
(1)求证:△BEC≌△DEC:
(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是一个正方形.
(1)请你在平面内找到一个点O,并连接OA、OB、OC、OD使得到△OAB、△BOC、△COD、△OAD是全等的等腰三角形.
(2)写出你找到的等腰三角形的顶角的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠CAB与∠CBA均为锐角,分别以CA、CB为边向△ABC外侧作正方形CADE和正方形CBFG,再作DD1⊥直线AB于D1,FF1⊥直线AB于F1
求证:(Ⅰ)DD1+FF1=AB;
(Ⅱ)线段AB的中点N也平分线段D1F1

查看答案和解析>>

同步练习册答案