精英家教网 > 初中数学 > 题目详情
8.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,若∠A=30°,CD=2,求AC的长.

分析 根据直角三角形斜边上的中线等于斜边的一半求出AB,根据直角三角形30°角所对的直角边等于斜边的一半求出BC,然后利用勾股定理列式计算即可得解.

解答 解:∵∠ACB=90°,D为AB的中点,
∴AB=2CD=2×2=4,
∵∠A=30°,
∴BC=$\frac{1}{2}$AB=$\frac{1}{2}$×4=2,
在Rt△ABC中,根据勾股定理得,AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.

点评 本题考查了直角三角形斜边上的中线等于斜边的一半,直角三角形30°角所对的直角边等于斜边的一半的性质,以及勾股定理,熟记各性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.(1)$\sqrt{8}$+2$\sqrt{3}$-($\sqrt{27}$-$\sqrt{2}$)
(2)(2$\sqrt{5}$-5$\sqrt{2}$)(-2$\sqrt{5}$-5$\sqrt{2}$)-($\sqrt{5}$-$\sqrt{2}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.按一定的规律排列的两行数:
n(n是奇数,且n≥3)3  5 7 9 …
m(m是偶数,且m≥4)4  12 24 40 …
猜想并用关于n的代数式表示m=$\frac{1}{2}$(n2-1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.二中岗十字路口南北方向的红绿灯设置为:红灯30秒,绿灯60秒,黄灯3秒,小明由南向北经过路口遇到红灯的概率为$\frac{10}{31}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.把一张对边互相平行的纸条折成如图所示的样子,EF是折痕,如果∠EFB=32°,那么下列结论:①∠CEF=32°;②∠AEF=148°;③∠BGE=64°;④∠BFD=116°正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知△ABC中,AB=AC=5,cosB=$\frac{3}{5}$,将△ABC绕点C旋转,得到△A1B1C.
(1)如图1,若点B1在线段BA的延长线上
①求证:AB∥A1C;
②求△AB1C的面积;
(2)如图2,点D为线段AC中点,点E是线段AB上的动点,在△ABC绕点C旋转过程中,点E的对应点是点E1,求线段DE1长度的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知抛物线y=-x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),P是线段BC上一点,过点P作PN∥y轴交x轴于点N,交抛物线于点M.
(1)求该抛物线的表达式;
(2)如果点P的横坐标为2,点Q是第一象限抛物线上的一点,且△QMC和△PMC的面积相等,求点Q的坐标;
(3)如果PM=$\frac{3}{2}$PN,求tan∠CMN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=3AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为($\frac{32}{15}$,$\frac{32}{15}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.小夏是一位善于观察、勤于动脑的学生.一天,他从2017年某个月日历表中随机框取了相邻的四个数(如图所示),分别用a,b,c,d表示.略加思考后,他写出了三个关系式:①a+c=b+d;②c-a=b-d;③ac-bd=7.其中正确的有(  )
2017年 月 农历丙申(猴)年辛丑月 建国68年
1
初五
2
初六
3
立夏初七
 4
初八
   
ad
bc
  
A.3个B.2个C.1个D.0个

查看答案和解析>>

同步练习册答案