精英家教网 > 初中数学 > 题目详情

如图1,抛物线y= -x2+x+3与x轴交于A.C两点,与y轴交于B点,与直线y=kx+b交于A.D两点.

(1)直接写出A、C两点坐标和直线AD的解析式;
(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1.1.3.4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?

(1)A(-3,0),C(4,0),y=-x-;(2)

解析试题分析:(1)直接观察图象即可得到A、C两点的坐标,再根据待定系数法即得结果;
(2)先根据抛物线与直线的解析式得到m、n的取值范围,再列举出所有情况,即得结果.
(1)A(-3,0),C(4,0); 直线AD解析式:y=-x-
(2)由抛物线与直线解析式可知,当m=-1时,-≤n≤,当m=1时,-1≤n≤
当m=3时,-≤n≤,当m=4时,-≤n≤0,
所有可能出现的结果如下:

第一次
第二次
-1



-1
(-1,-1)
(-1,1)
(-1,3)
(-1,4)
 1
 (1,-1)
(1,1)
(1,3)
(1,4)
 3
 (3,-1)
 (3,1)
 (3,3)
(3,4)
 4
 (4,-1)
(4,1)
(4,3)
 (4,4)
 
总共有16种结果,每种结果出现的可能性相同,而落在图1中抛物线与直线围成区域内的结果有7种:(-1,1),(1,-1),(1,1),(1,3),(3,-1),(3,1),(4,-1),
因此P(落在抛物线与直线围成区域内)=
考点:本题考查的是二次函数的性质
点评:解答本题的关键是熟练掌握概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知二次函数的图象是经过点A(1,0),B(3,0),E(0,6)三点的一条抛物线.
(1)求这条抛物线的解析式;
(2)如图,设抛物线的顶点为C,对称轴交x轴于点D,在y轴正半轴上有一点P,且以A、O、P为顶点的三角形与△ACD相似,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=
12
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)在(2)的条件下,设抛物线的对称轴分别交AB、x轴于点D、M,连接PA、PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(4)在(2)的条件下,设P点的横坐标为x,△PAB的铅垂高为h、面积为S,请分别写出h和S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,矩形ABCD,点C与坐标原点O重合,点A在x轴上,点B坐标为(3,
3
),求经过A、B、C三点抛物线的解析式;
(2)如图2,抛物线E:y=-
1
2
x2+bx+c
经过坐标原点O,其顶点在y轴左侧,以O为顶点作矩形OADC,A、C为抛物线E上两点,若AC∥x轴,AD=2CD,则抛物线的解析式是
 

(3)如图3,点A、B、C分别为抛物线F:y=ax2+bx+c(a<0)上的点,点B在对称轴右侧,点D在抛物线外,顺次连接A、B、C、D四点,所成四边形为矩形,且AC∥x轴,AD=2CD,求矩形ABCD的周长(用含a的式子表示).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将抛物线y=-
1
2
x2
平移后经过原点O和点A(6,0),平移后的抛物线的顶点为点B,对称轴与抛物线y=-
1
2
x2
相交于点C,则图中直线BC与两条抛物线围成的阴影部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)设点P是抛物线(第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案