精英家教网 > 初中数学 > 题目详情
(2002•哈尔滨)如图,圆内接正六边形ABCDEF中,AC、BF交于点M.则S△ABM:S△AFM=   
【答案】分析:先根据正六边形的性质判断出△AMF≌△BMC,再求出△ABM与△AMF的高之比即可.
解答:解:过M作MG⊥AB于G;
∵六边形ABCDEF是正六边形,
∴∠FAB=∠ABC=120°,AF=AB=BC,FE∥BC,FE=BC,
∴△ABF≌△ABC,∠AFM=∠ACB,
∴△AMF≌△BCM;
连接BE,
∵六边形ABCDEF是正六边形,
∴BE是⊙O的直径,∠MFE=∠MBC=90°,
∴∠FAM=90°,
∴S△ABM:S△AFM=GM:AM;
∵∠FAB=∠ABC=120°,∠FAM=90°,
∴∠MAB=∠BCM=30°,
=sin30°=,即S△ABM:S△AFM=
点评:本题考查的是正六边形及等腰三角形的性质、圆周角定理,综合性较强,但难度适中.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2002•哈尔滨)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;
(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《反比例函数》(01)(解析版) 题型:选择题

(2002•哈尔滨)已知y与x成反比例,当x=3时,y=4,那么当y=3时,x的值等于( )
A.4
B.-4
C.3
D.-3

查看答案和解析>>

科目:初中数学 来源:2010年中考数学模拟卷(1)(解析版) 题型:解答题

(2002•哈尔滨)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;
(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(2002•哈尔滨)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;
(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:选择题

(2002•哈尔滨)已知y与x成反比例,当x=3时,y=4,那么当y=3时,x的值等于( )
A.4
B.-4
C.3
D.-3

查看答案和解析>>

同步练习册答案