精英家教网 > 初中数学 > 题目详情

【题目】1)作图发现:

如图1,已知,小涵同学以为边向外作等边和等边,连接.这时他发现的数量关系是

2)拓展探究:

如图2,已知,小涵同学以为边向外作正方形和正方形,连接,试判断之间的数量关系,并说明理由.

3)解决问题

如图3,要测量池塘两岸相对的两点的距离,已经测得米,,则 米.

【答案】1BE=CD;(2BE=CD,理由见解析;(3200

【解析】

1)利用等边三角形的性质得出,然后有,再利用SAS即可证明,则有

2)利用正方形的性质得出,然后有,再利用SAS即可证明,则有

3)根据前(2)问的启发,过作等腰直角,连接,同样的方法证明,则有,在中利用勾股定理即可求出CD的值,则BE的值可求.

1)如图1所示:

都是等边三角形,

中,

2

四边形均为正方形,

中,

3)如图3,

作等腰直角

米,

米,

连接

中,

中,米,米,

根据勾股定理得:(米),

米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图甲是一个大长方形剪去一个小长方形后形成的图形,已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题

(1)图甲中的BC长是多少?

(2)图乙中的a是多少?

(3)图甲中的图形面积的多少?

(4)图乙中的b是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若点Pab)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个派生函数.例如:点(2 )在函数y=的图象上,则函数y=2x2+ 称为函数y=的一个派生函数.现给出以下两个命题:

1)存在函数y=的一个派生函数,其图象的对称轴在y轴的右侧

2)函数y=的所有派生函数的图象都经过同一点,下列判断正确的是(  )

A. 命题(1)与命题(2)都是真命题

B. 命题(1)与命题(2)都是假命题

C. 命题(1)是假命题,命题(2)是真命题

D. 命题(1)是真命题,命题(2)是假命题

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的球类运动进行了统计,并绘制如图1、图2所示的条形和扇形统计图.

根据统计图中的信息,解答下列问题:

1)求本次被调查的学生人数,并补全条形统计图;

2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;

3)根据调查结果,请你为学校即将组织的一项球类比赛提出合理化建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax﹣1的图象与反比例函数y=的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=

(1)求a,k的值及点B的坐标;

(2)观察图象,请直接写出不等式ax﹣1≥的解集;

(3)在y轴上存在一点P,使得PDCODC相似,请你求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCAB=AC,∠BAC=90°,PBC上的一动点AP=AQ,∠PAQ=90°,连接CQ

(1)求证:CQBC

(2)△ACQ能否是直角三角形若能请直接写出此时点P的位置;若不能请说明理由.

(3)当点PBC上什么位置时,△ACQ是等腰三角形请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MNAD,ADDE,CFAB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点CDE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高   米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点

(1)求m的值及C点坐标;

(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由

(3)P为抛物线上一点,它关于直线BC的对称点为Q

①当四边形PBQC为菱形时,求点P的坐标;

②点P的横坐标为t(0t4),当t为何值时,四边形PBQC的面积最大,请说明理由.

查看答案和解析>>

同步练习册答案