精英家教网 > 初中数学 > 题目详情
(2010•襄阳)如图,点E,C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A=∠D=90°.
(1)求证:AB=DE;
(2)若AC交DE于M,且AB=,ME=,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.
【答案】分析:(1)通过证明△ABC≌△DEF即可得出AB=DE.
(2)要求角的度数就要解直角三角形,根据特殊角的三角函数值来计算.
解答:(1)证明:∵BE=FC,
∴BC=EF,
又∵∠ABC=∠DEF,∠A=∠D,
∴△ABC≌△DEF,(1分)
∴AB=DE.(2分)

(2)解:∵∠DEF=∠B=45°,
∴DE∥AB,
∴∠CME=∠A=90°,(3分)
∴AC=AB=,MC=ME=,(4分)
∴在Rt△MEC中,EC===2,
∴CG=CE=2,(5分)
在Rt△CAG中,cos∠ACG==
∴∠ACG=30°,(6分)
∴∠ECG=∠ACB-∠ACG=45°-30°=15°.(7分)
点评:本题综合考查了旋转变换作图,三角形全等和解直角三角形的综合应用.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2010•襄阳)如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?

查看答案和解析>>

科目:初中数学 来源:2010年湖北省襄樊市中考数学试卷(解析版) 题型:解答题

(2010•襄阳)如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《锐角三角函数》(05)(解析版) 题型:解答题

(2010•襄阳)如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.
(1)证明:直线PB是⊙O的切线;
(2)探究线段PO与线段BC之间的数量关系,并加以证明;
(3)求sin∠OPA的值.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《圆》(16)(解析版) 题型:解答题

(2010•襄阳)如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.
(1)证明:直线PB是⊙O的切线;
(2)探究线段PO与线段BC之间的数量关系,并加以证明;
(3)求sin∠OPA的值.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省襄樊市中考数学试卷(解析版) 题型:解答题

(2010•襄阳)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°.热气球A的高度为240米,求这栋大楼的高度.

查看答案和解析>>

同步练习册答案