精英家教网 > 初中数学 > 题目详情
精英家教网有一塔形几何体由若干个正方体构成,构成方式如图所示:上层正方体底面的四个顶点恰好是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形几何体的全面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是(  )
A、4B、5C、6D、7
分析:根据题意可得:这n个正方体能构成首先为2,公比为
2
2
的等比数列,故这n个正方体的侧面构成了首先为4,公比为
1
2
的等比数列.由该塔形几何体的全面积(含最底层正方体的底面面积)超过39,求和即可求得答案.
解答:解:设有n个正方体构成,其表面积由两部分组成:
(1)俯视图、表面只有一个正方形,其边长为2.
(2)侧面则由4n个正方形构成,且各层(从下往上看)正方形面积构成一个首项为4,公比为
1
2
的等比数列.
∴表面积为:4+4+4×[4+4×
1
2
+4×(
1
2
)
2
+…+4×(
1
2
)
n-1
]>39,
∴8+4×
4×[1-(
1
2
)
n
]
1-
1
2
>39,
∴n的最小值为6.
故选C.
点评:此题考查了立体图形的表面积问题.注意找到规律:这n个正方体的侧面构成了首先为4,公比为
1
2
的等比数列,是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网有一塔形几何体由若干个正方体构成,构成方式如图所示:上层正方体底面的四个顶点恰好是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,且该塔形几何体的全面积(含最底层正方体的底面面积)超过639,则该塔形中正方体的个数至少是
 
个.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江萧山高桥、湘湖初中八年级上期中数学试卷(解析版) 题型:填空题

有一塔形几何体由若干个正方体构成, 构成方式如图所示: 上层正方体底面的四个顶点恰好是下层正方体上底面各边的中点. 已知最上层正方体的棱长为2, 且该塔形几何体的表面积(不含重叠部分,含最底层正方体的底面面积) 超过39, 则该塔形中正方体的个数至少是______个.

 

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(义蓬二中 项国庆)(解析版) 题型:填空题

有一塔形几何体由若干个正方体构成,构成方式如图所示:上层正方体底面的四个顶点恰好是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,且该塔形几何体的全面积(含最底层正方体的底面面积)超过639,则该塔形中正方体的个数至少是    个.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区义蓬二中中考模拟数学试卷(解析版) 题型:填空题

有一塔形几何体由若干个正方体构成,构成方式如图所示:上层正方体底面的四个顶点恰好是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,且该塔形几何体的全面积(含最底层正方体的底面面积)超过639,则该塔形中正方体的个数至少是    个.

查看答案和解析>>

同步练习册答案