精英家教网 > 初中数学 > 题目详情

如图,B、C分别在反比例函数与反比例函数的图象上,点A在x轴上,且四边形OABC是平行四边形,则四边形OABC的面积为         .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在锐角△ABC内有一点P,直线AP,BP,CP分别交对边于Q1,Q2,Q3,且∠PQ1C=∠PQ2A=∠PQ3B.
试问:点P是否必为△ABC的垂心?如果是,请证明;如果不是,请举反例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)试说明:BP=DP;
(2)如图2,若正方形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请画图用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与正方形PECF的两个顶点连接,使得到的两条线段在正方形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论;
(4)旋转的过程中AP和DF的长度是否相等,若不等,直接写出AP:DF=
 

(5)若正方形ABCD的边长是4,正方形PECF的边长是1.把正方形PECF绕点C按逆时针方向旋转的过程中,△PBD的面积是否存在最大值、最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)试说明:BP=DP;
(2)如图2,若正方形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请画图用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与正方形PECF的两个顶点连接,使得到的两条线段在正方形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论;
(4)旋转的过程中AP和DF的长度是否相等?若不等,直接写出AP:DF=
 

(5)若正方形ABCD的边长是4,正方形PECF的边长是1.把正方形PECF绕点C按逆时针方向旋转精英家教网的过程中,△PBD的面积是否存在最大值、最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮同学为了巩固自己对平行四边形判定知识的掌握情况,设计了一个游戏,他将四边形ABCD中的部分条件分别写在四张大小、质地及背面颜色都相同的卡片上,卡片如图:
他将卡片正面朝下反扣在桌面上,洗匀后从中随机抽取两张,然后根据卡片上的两个条件判断四边形ABCD是否为平行四边形,请你用列举法(列表法或树状图法)求出他能够判定四边形ABCD为平行四边形的概率.(卡片可用a、b、c、d表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图14所示,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+[x/6]+c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1)。已知AM=BC。

[1]求二次函数的解析式;

[2]证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;

[3]在[2]的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N。

①若直线l⊥BD,如图14所示,试求[1/BP]+[1/BQ]的值;

②若l为满足条件的任意直线。如图15所示,①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例。

 


查看答案和解析>>

同步练习册答案