(本题满分12分)如图,二次函数的图像与x轴交于点A,B.点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.
(1)当点C在这条抛物线上时,求m的值.
(2)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,求m的值.
(1);(2)①( ,-2);② 或 或 或.
【解析】
试题分析:(1)先根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入,即可求出m的值;
(2)①先由旋转的性质得出点D的坐标为(m,﹣2),再根据二次函数的性质求出抛物线的对称轴为直线,然后根据点D在直线上,即可求出点D的坐标;
②以DN为直角边作等腰直角三角形DNE时,分别以D、N为直角顶点,在DN的两侧分别作出等腰直角三角形DNE,E点的位置分四种情况讨论.针对每一种情况,都可以先根据等腰直角三角形的性质求出点E的坐标,然后根据点E在直线上,列出关于m的方程,解方程即可求出m的值.
试题解析:(1)∵△CMN是等腰直角三角形CMN,∠CMN=90°,∴CM=MN=2,∴点C的坐标为(m,2),∵点C(m,2)在抛物线上,∴,解得,.∴点C在这条抛物线上时,m的值为或;
(2)①∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,∴∠CND=90°,DN=CN=CM=MN,∴CD=CN=2CM=2MN,∴DM=CM=MN,∠DMN=90°,∴点D的坐标为(m,﹣2).又∵抛物线的对称轴为直线,点D在这条抛物线的对称轴上,∴点D的坐标为(,﹣2);
②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:如果E点在E1的位置时,∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),∴点E1的(m﹣2,0),∵点E1在抛物线的对称轴直线上,∴,解得;
如果E点在E2的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E2的(m+2,﹣4),∵点E2在抛物线的对称轴直线上,∴,解得;
如果E点在E3的位置时,∵点D的坐标为(m,﹣2),∴点E3的(m,2),∵点E3在抛物线的对称轴直线上,∴;
如果E点在E4的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2),∵点E4在抛物线的对称轴直线上,∴,解得;
综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为 或 或 或.
考点:二次函数综合题.
科目:初中数学 来源:2014-2015学年江苏省宜兴市九年级上学期第二次质量抽测数学试卷(解析版) 题型:填空题
抛物线y=-x2的顶点坐标为________;若点A(3,m)是此抛物线上一点,则m= ____;把此抛物线向下平移4个单位得到的抛物线的函数关系式是 .
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省扬州市宝应县九年级上学期期末测试数学试卷(解析版) 题型:填空题
如图,在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,点E、F分别是BO、BC的中点,若AB=6cm,则△BEF的周长为
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省扬州市宝应县九年级上学期期末测试数学试卷(解析版) 题型:选择题
如图,已知AB为⊙O的直径,点C、D在⊙O上,∠ABC=50°,则∠D的度数为( )
A.30° B.40° C.50° D.60°
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省盐城市盐都区九年级上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分10分)盐城公共自行车项目现已全部建成,盐城市区250个站点,累计投放6000辆自行车,为人们的生活带来了方便.图(1)所示的是自行车的实物图.图(2)是一辆自行车的部分几何示意图,其中车架档AC的长为45cm,且∠CAB=75°,∠CBA=50°.(参考数据:sin75°≈0.96,cos75°≈0.26,tan75°≈3.73 ,sin50°≈0.76,cos50°≈0.64,tan50°≈1.19)
(1)求车座固定点C到车架档AB的距离;
(2)求车架档AB的长(结果精确到1cm).
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省盐城市盐都区九年级上学期期末考试数学试卷(解析版) 题型:填空题
如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 cm.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省苏州市九年级上学期期末考试数学试卷(解析版) 题型:解答题
如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.
(1)若ED=BE,求∠F的度数:
(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);
(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com