·ÖÎö£º£¨1£©¸ù¾Ý¾ØÐεÄÐÔÖÊ¿ÉÖª£¬Ö±Ïßy=-
x+b±Ø¹ý¾ØÐεÄÖÐÐÄ£¬ÓÉÌâÒâµÃ¾ØÐεÄÖÐÐÄ×ø±êΪ£¨6£¬3£©£¬ËùÒÔ3=-
¡Á6+b£¬½âµÃb=12£»£¨2£©¼ÙÉè´æÔÚÖ±Ïßy=-
x+bÒÔPFEΪʼ±ßÈƵãP˳ʱÕëÐýתʱ£¬ÓëÖ±ÏßABºÍxÖá·Ö±ð½»ÓÚµãN¡¢M£¬ÇÒONƽ·Ö¡ÏANMµÄÇé¿ö£®
¢Ùµ±Ö±Ïßy=-
x+12Óë±ßABºÍOCÏཻʱ£®¹ýµãO×÷OQ¡ÍPMÓÚµãQ£¬¿É½âME=8-4
£»
¢Úµ±Ö±Ïßy=-
x+12ÓëÖ±ÏßABºÍxÖáÏཻʱ£®Í¬ÉϿɵãºME=8+4
£¨»òÓÉOM=MN½âµÃ£©£»
£¨3£©¼ÙÉèÑØÖ±Ïßy=-
x+12½«¾ØÐÎABCOÕÛµþ£¬µãOÂäÔÚ±ßABÉÏO¡ä´¦£®Á¬½ÓPO¡ä£¬OO¡ä£®ÔòÓÐPO¡ä=OP£¬ÓÉ£¨1£©µÃAB´¹Ö±Æ½·ÖOP£¬ËùÒÔPO¡ä=OO¡ä£¬Ôò¡÷OPO¡äΪµÈ±ßÈý½ÇÐΣ®Ôò¡ÏOPE=30¡ã£¬Ôò£¨2£©Öª¡ÏOPE£¾30¡ãËùÒÔÑØÖ±Ïßy=-
x+12½«¾ØÐÎABCOÕÛµþ£¬µãO²»¿ÉÄÜÂäÔÚ±ßABÉÏ£®ÉèÑØÖ±Ïßy=-
x+a½«¾ØÐÎABCOÕÛµþ£¬µãOÇ¡ºÃÂäÔÚ±ßABÉÏO¡ä´¦£®Á¬½ÓP¡äO¡ä£¬OO¡ä£®ÔòÓÐP¡äO¡ä=OP¡ä=a£¬ÔòÓÉÌâÒâµÃ£ºAP¡ä=a-6£¬¡ÏOPE=¡ÏAO¡äO£¬Rt¡÷OPEÖУ¬
=
£¬¼´
=
ËùÒÔAO¡ä=9£¬ÔÚRt¡÷AP¡äO¡äÖУ¬Óɹ´¹É¶¨ÀíµÃ£º£¨a-6£©
2+9
2=a
2½âµÃ£ºa=
£¬ËùÒÔ½«Ö±Ïßy=-
x+12ÑØyÖáÏòÏÂƽÒÆ
µ¥Î»µÃÖ±Ïßy=-
x+
£¬½«¾ØÐÎABCOÑØÖ±Ïßy=-
x+
ÕÛµþ£¬µãOÇ¡ºÃÂäÔÚ±ßABÉÏ£®
½â´ð£º½â£º£¨1£©ÒòΪֱÏßy=-
x+bƽ·Ö¾ØÐÎABCOµÄÃæ»ý£¬ËùÒÔÆä±Ø¹ý¾ØÐεÄÖÐÐÄ£¬ÓÉÌâÒâµÃ¾ØÐεÄÖÐÐÄ×ø±êΪ£¨6£¬3£©£¬
¡à3=-
¡Á6+b£¬
½âµÃb=12£®
£¨2£©
¼ÙÉè´æÔÚÖ±Ïßy=-
x+bÒÔPFEΪʼ±ßÈƵãP˳ʱÕëÐýת£¬
ʱ£¬ÓëÖ±ÏßABºÍxÖá·Ö±ð½»ÓÚµãN¡¢M£¬ÇÒONƽ·Ö¡ÏANMµÄÇé¿ö£®
¢Ùµ±Ö±Ïßy=-
x+12Óë±ßABºÍOCÏཻʱ£®
¹ýµãO×÷OQ¡ÍPMÓÚµãQ£¬
ÒòΪONƽ·Ö¡ÏANM£¬ÇÒOA¡ÍAB£¬ËùÒÔOQ=OA=6£¬ÓÉ£¨1£©ÖªOP=12£¬
ÔÚRt¡÷OPQÖУ¬½âµÃ¡ÏOPM=30¡ã£»
ÔÚRt¡÷OPMÖУ¬½âµÃOM=4
£»
µ±y=0ʱ£¬ÓÐÒ»
x+12=0£¬½âµÃ£ºx=8£¬
ËùÒÔOE=8£¬
ËùÒÔME=8-4
£¨7·Ö£©
¢Úµ±Ö±Ïßy=-
x+12ÓëÖ±ÏßABºÍxÖáÏཻʱ£®
ͬÉϿɵãºME=8+4
£¨8·Ö£©£¨»òÓÉOM=MN½âµÃ£©
£¨3£©
¼ÙÉèÑØÖ±Ïßy=-
x+12½«¾ØÐÎABCOÕÛµþ£¬µãOÂäÔÚ±ßABÉÏO¡ä´¦£®
Á¬½ÓPO¡ä£¬OO¡ä£¬ÔòÓÐPO¡ä=OP£¬
ÓÉ£¨1£©µÃAB´¹Ö±Æ½·ÖOP£¬ËùÒÔPO¡ä=OO¡ä£¬
Ôò¡÷OPO¡äΪµÈ±ßÈý½ÇÐΣ®Ôò¡ÏOPE=30¡ã£¬Ôò£¨2£©Öª¡ÏOPE£¾30¡ã£¬
ËùÒÔÑØÖ±Ïßy=-
x+12½«¾ØÐÎABCOÕÛµþ£¬µãO²»¿ÉÄÜÂäÔÚ±ßABÉÏ£®
ÉèÑØÖ±Ïßy=-
x+a½«¾ØÐÎABCOÕÛµþ£¬µãOÇ¡ºÃÂäÔÚ±ßABÉÏO¡ä´¦£®
Á¬½ÓP¡äO¡ä£¬OO¡ä£®ÔòÓÐP¡äO¡ä=OP¡ä=a£¬
ÔòÓÉÌâÒâµÃ£ºAP¡ä=a-6£¬¡ÏOPE=¡ÏAO¡äO£¬
ÔÚRt¡÷OPEÖУ¬tan¡ÏOPE=
ÔÚRt¡÷OAO¡äÖУ¬tan¡ÏAO¡äO=
£¬
ËùÒÔ
=
£¬¼´
=
£¬
ËùÒÔAO¡ä=9£¬
ÔÚRt¡÷AP¡äO¡äÖУ¬Óɹ´¹É¶¨ÀíµÃ£º£¨a-6£©
2+9
2=a
2½âµÃ£ºa=
£¬
ËùÒÔ½«Ö±Ïßy=-
x+12ÑØyÖáÏòÏÂƽÒÆ
µ¥Î»µÃÖ±Ïßy=-
x+
£¬
½«¾ØÐÎABCOÑØÖ±Ïßy=-
x+
ÕÛµþ£¬µãOÇ¡ºÃÂäÔÚ±ßABÉÏ£®