精英家教网 > 初中数学 > 题目详情
9.已知2m-1的平方根是±3,5m-n+1的立方根是-4,试求2m+n的平方根.

分析 根据平方根及立方根的定义,求出m、n的值,代入可得出2m+n的平方根.

解答 解:因为2m-1的平方根是±3,
所以2m-1=9,
因为5m-n+1的立方根是-4,
所以5m-n+1=-64,
可得:m=5,n=90,
把m=5,n=90代入2m+n=100.
所以2m+n的平方根是±10.

点评 本题考查了立方根、平方根及算术平方根的定义,属于基础题,求出m、n的值是解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.小明在做一道数学题:“两个多项式A和B,其中B=4m2-5m+6,试求“A+B”时,错将“A+B”看成了“A-B”,结果求出的答案是-7m2+10m+12,请你计算出正确的“A+B”的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.在直角坐标系中,点A(0,3),B(1,0),点D为线段OA的一个三等分点,则直线DO的解析式为y=-$\frac{1}{5}$x+1或y=-$\frac{2}{5}$x+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知抛物线C1:y=ax2-2amx+am2+2m+3(a>0,m<0)的顶点为A,将抛物线C1绕点Q(-$\frac{1}{2}$,2),旋转180°得到抛物线C2,抛物线C2的顶点B在y轴上.
(1)求抛物线C1的顶点坐标;(用m表示)
(2)若a=1,求抛物线C2的解析式;
(3)若m=-1,E(1,3),F(2,4),是否存在a使抛物线C1与线段EF有两个相异的交点?若存在,请求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.代数式a,a2b,a+b,$\frac{{a}^{2}+b}{2}$π,πR2中,单项式有3个,二次单项式有2个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在四边形ABCE中,点D在对角线BE上,$\frac{AB}{AD}$=$\frac{BC}{DE}$=$\frac{AC}{AE}$,求证:∠ABD=∠ACE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,由观察可知,三角形的中心投影是一个三角形,它还可以是线段.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:$\frac{sin45°}{1+sin60°}$-$\frac{cos45°}{1-sin60°}$+$\sqrt{α(sin30°-cos30°)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为Sl,△ACE的面积为S2,若S△ABC=12,则S1+S2=14.

查看答案和解析>>

同步练习册答案