精英家教网 > 初中数学 > 题目详情

【题目】已知四边形ABCD是菱形,AB=4,ABC=60°EAF的两边分别与射线CB,DC相交于点E,F,且EAF=60°

1如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;

2如图2,当点E是线段CB上任意一点时点E不与B、C重合,求证:BE=CF;

3如图3,当点E在线段CB的延长线上,且EAB=15°时,求点F到BC的距离.

【答案】1AE=EF=AF;2证明过程见解析;33-

【解析】

试题分析:1结论AE=EF=AF.只要证明AE=AF即可证明AEF是等边三角形;2欲证明BE=CF,只要证明BAE≌△CAF即可;3过点A作AGBC于点G,过点F作FHEC于点H,根据FH=CFcos30°,因为CF=BE,只要求出BE即可解决问题.

试题解析:1结论AE=EF=AF.

理由:如图1中,连接AC, 四边形ABCD是菱形,B=60° AB=BC=CD=AD,B=D=60°

∴△ABC,ADC是等边三角形, ∴∠BAC=DAC=60° BE=EC, ∴∠BAE=CAE=30°,AEBC,

∵∠EAF=60° ∴∠CAF=DAF=30° AFCD, AE=AF菱形的高相等

∴△AEF是等边三角形, AE=EF=AF.

2如图2中,∵∠BAC=EAF=60° ∴∠BAE=CAE,

BAE和CAF中, ∴△BAE≌△CAF, BE=CF.

3过点A作AGBC于点G,过点F作FHEC于点H, ∵∠EAB=15°ABC=60° ∴∠AEB=45°

在RTAGB中,∵∠ABC=60°AB=4, BG=2,AG=2,在RTAEG中,∵∠AEG=EAG=45°

AG=GE=2 EB=EGBG=22, ∵△AEB≌△AFC,

AE=AF,EB=CF=22,AEB=AFC=45° ∵∠EAF=60°,AE=AF, ∴△AEF是等边三角形,

∴∠AEF=AFE=60° ∵∠AEB=45°AEF=60° ∴∠CEF=AEF﹣∠AEB=15°

在RTEFH中,CEF=15° ∴∠EFH=75° ∵∠AFE=60° ∴∠AFH=EFH﹣∠AFE=15°

∵∠AFC=45°CFH=AFC﹣∠AFH=30° 在RTCHF中,∵∠CFH=30°,CF=22,

FH=CFcos30°=22=3 点F到BC的距离为3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2016年泉州市初中体育中考中随意抽取某校5位同学一分钟跳绳的次数分别为158160154158170则由这组数据得到的结论错误的是(  )

A. 平均数为160 B. 中位数为158 C. 众数为158 D. 方差为20.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在数轴上 A 点表示数 aB 点示数 bC 点表示数 cb 是最大的负整数,且 ab 满足|a+ 3|+c62=0

1a= b= c=

2)若将数轴折叠,使得 A点与B 点重合,则点 C与数 表示的点重合;

3)点 ABC开始在数轴上运动,若点 A以每秒 2个单位长度的速度向左运动,同时,点 B C分别以每秒1个单位长度和 4个单位长度的速度向右运动,假设 t 秒钟过后,若点 A与点 B之间的距离表示为 AB,点 A与点 C之间的距离表示为 AC,点 B与点 C之间的距离表示为 BC.则 AB= AC= BC= .(用 t的代数式表示)

4)请问:2BC+AB - AC的值是否随着时间 t 的变化而改变?若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图一,抛物线y=ax2+bx+cx轴正半轴交于AB两点,与y轴交于点C,直线y=x-2经过AC两点,且AB=2

1)求抛物线的解析式;

2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点ED,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.

3)在(2)的条件下,是否存在t的值,使以PBD为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=﹣x+4,回答下列问题:

(1)请在右图的直角坐标系中画出函数y=﹣x+4图象

(2)y的值随x值的增大而________

(3)当y=2时,x的值为_________

(4)当y0时,x的取值范围是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在数轴上A点表示数aB点示数bC点表示数cb是最小的正整数,且ab满足 +(c-7)2=0.

(1) a= b= c=

(2) 若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合.

(3) ABC开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= AC= BC= .(用含t的代数式表示)

(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】检修小组从A地出发,在东西路上检修线路,若规定向东行驶的路程为正数,向西行驶的路程为负数,一天中行驶记录(单位;千米)如下:

1)收工时检修小组在A地的哪侧,距A地多远?

2)若每千米耗油0.3升,从出发到收工共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司准备投资开发AB两种新产品通过市场调研发现如果单独投资A种产品则所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系yA=kx如果单独投资B种产品则所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系yB=ax2+bx.根据公司信息部的报告yAyB(万元)与投资金额x(万元)的部分对应值(如下表)

(1)求正比例函数和二次函数的解析式

(2)如果公司准备投资20万元同时开发AB两种新产品请你设计一个能获得最大利润的投资方案并求出按此方案能获得的最大利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:

(1)本次接受随机抽样调查的学生人数为   ,图①中m的值为   

(2)求本次调查获取的样本数据的众数、中位数和平均数;

(3)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

查看答案和解析>>

同步练习册答案