精英家教网 > 初中数学 > 题目详情
(2007•南宁)如图,AB、AC是圆的两条弦,AD是圆的一条直径,且AD平分∠BAC,下列结论中不一定正确的是( )

A.
B.
C.BC⊥AD
D.∠B=∠C
【答案】分析:AD平分∠BAC可得∠BAD=∠CAD,由圆周角定理知=
因为AD是圆的一条直径,由垂径定理可知BC⊥AD,弧AB=弧AC;
由圆周角定理知∠B=∠C;所以不一定正确的是A.
解答:解:∵AD平分∠BAC,
∴∠BAD=∠CAD;
=
∵AD是圆的直径,且=
=,BC⊥AD;(垂径定理)
∴∠B=∠C.(圆周角定理)
因此B、C、D选项都正确.
故选A.
点评:本题综合考查了垂径定理和圆周角的求法及性质.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的对称》(04)(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《四边形》(10)(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《平面直角坐标系》(02)(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省盐城市盐城中学初三年级中考模拟数学试卷1(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年广西南宁市中考数学试卷(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案