精英家教网 > 初中数学 > 题目详情
1.若一次函数y=-x+b-$\frac{3}{2}$的图象不过第三象限,则b的取值范围是b≥$\frac{3}{2}$.

分析 根据一次函数的图象不经过第三象限列出关于b的不等式,求出b的取值范围即可.

解答 解:∵一次函数y=-x+b-$\frac{3}{2}$的图象不过第三象限,
∴b-$\frac{3}{2}$≥0,解得b≥$\frac{3}{2}$.
故答案为:b≥$\frac{3}{2}$.

点评 本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一二四象限是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线y=x于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线y=x于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点B4的纵坐标为2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在△ABC中,AB=AC=2,点D在AC边上,且AD=BD=BC,则cosA的值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}+1}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.函数y=-x2+2x+$\frac{1}{2}$有最值为(  )
A.最大值$\frac{3}{2}$B.最小值$\frac{3}{2}$C.最大值-$\frac{1}{2}$D.最小值-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如果$\frac{6sinα-2cosα}{2sinα+cosα}$=2,那么tanα=(  )
A.2B.1C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:
①△ABE≌△DCF;②△DPH是等腰三角形;③PF=$\frac{2\sqrt{3}-3}{3}$AB;④$\frac{{S}_{△PBD}}{{S}_{四边形ABCD}}$=$\frac{\sqrt{3}-1}{4}$.
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某广场的旗杆AB旁边有一个半圆的时钟模型,如图所示,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径2米,旗杆的底端A到钟面9点刻度C的距离为5米,一天李华同学观察到阳光下旗杆顶端B的影子刚好投到时钟的11点的刻度上,同时测得一米长的标杆的影长1.6米,
(1)计算时钟的9点转到11点时的旋转角是多少度?
(2)求旗杆AB的高度.(精确到0.1米,参考数据$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在等腰三角形ABC中,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转,旋转角与∠C相等,得到线段PD,连接DB.
(1)当∠C=90°时,请你在图1中补全图形,并直接写出∠DBA的度数;
(2)如图2,若∠C=α,求∠DBA的度数(用含α的代数式表示);
(3)连接AD,若∠C=30°,AC=2,∠APC=135°,请写出求AD长的思路.(可以不写出计算结果)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是2$\sqrt{34}$cm.

查看答案和解析>>

同步练习册答案