精英家教网 > 初中数学 > 题目详情
(2013•海门市二模)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x 0 1 2 3 4 5
y 4 1 0 1 4 9
(1)当x=-1时,y的值为
9
9

(2)点A(x1,y1)、B(x2,y2)在该函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系是
y1<y2
y1<y2

(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:
y=(x-5)2或y=x2-10x+25
y=(x-5)2或y=x2-10x+25

(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数y=ax2+bx+c的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?
分析:(1)先根据图表,当x=1和x=3时,所对应的y值相等,得出抛物线的对称轴是直线x=2,再由二次函数的对称性可知,x=-1与x=5时的函数值相等,即为9;
(2)由表格可知,当1<x<2时,0<y<1;当3<x<4时,1<y<4,由此可判断y1 与y2的大小;
(3)先求出二次函数y=ax2+bx+c的解析式,再根据图象平移“左加右减、上加下减”的规律即可写出沿x轴向右平移3个单位的函数解析式;
(4)先将点P1、P2、P3的坐标代入y=(x-2)2,得到y1=(m-2)2,y2=(m-1)2,y3=m2,再根据不等式的性质及m<-3得出y1>y2>y3>0,m+3<0,m-1<0,然后判断y2+y3-y1>0,即y2+y3>y1,根据三角形三边关系定理即可得出当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长.
解答:解:(1)根据图表知,当x=1和x=3时,所对应的y值都是2,
∴抛物线的对称轴是直线x=2,
∴x=-1与x=5时的函数值相等,
∵x=5时,y=9,
∴x=-1时,y=9;

(2)∵当1<x1<2时,函数值y1小于1;当3<x2<4时,函数值y2大于1,
∴y1<y2

(3)∵二次函数y=ax2+bx+c的顶点坐标为(2,0),
∴可设此二次函数的顶点式为y=a(x-2)2
将点(0,4)代入,得a(0-2)2=4,
解得a=1,
∴y=(x-2)2
∴将y=(x-2)2的图象沿x轴向右平移3个单位,所对应的函数关系式为y=(x-2-3)2
即y=(x-5)2或y=x2-10x+25;

(4)当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长.理由如下:
∵y=(x-2)2
∴y1=(m-2)2,y2=(m-1)2,y3=m2
∵m<-3,
∴y1>y2>y3>0,m+3<0,m-1<-4<0,
∵y2+y3-y1=(m-1)2+m2-(m-2)2=m2+2m-3=(m+3)(m-1),
∴y2+y3-y1>0,
∴y2+y3>y1
∴当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长.
故答案为9;y1<y2;y=(x-5)2或y=x2-10x+25.
点评:本题主要考查了二次函数图象上点的坐标特征,用待定系数法求二次函数的解析式,二次函数的性质,函数图象的平移规律,不等式的性质,三角形三边关系定理等知识,综合性较强,难度适中.其中(3)还可以将表格中任意三点的坐标代入求出二次函数的解析式,(4)中先判断出y1>y2>y3>0是利用三角形三边关系定理的前提条件,一般地,在检验三条线段能否组成一个三角形时,其简便做法就是看两条较短边的和是否大于第三边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•海门市二模)如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是
3<AB<13
3<AB<13

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海门市二模)(1)计算:|
3
-1|+2-2-2sin60°+(π-2010)0
(2)先化简,再求值:(x+1-
15
x-1
)÷
x-4
x-1
,其中x=5
2
-4.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海门市二模)已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由;
(3)若此方程的两个实数根的平方和为30,求实数k.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海门市二模)五一假期中,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮.两人沿滨江路并行跑了2分钟后,决定进行直线长跑比赛,比赛时小明的速度始终是250米/分,小亮的速度始终是300米/分.下图是两人之间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题:
(1)请直接写出小明和小亮比赛前的速度,并说出图中点A(1,500)的实际意义;
(2)请在图中的
100
100
内填上正确的值,并求两人比赛过程中y与x之间的函数关系式;
(3)若小亮从家出门跑了11分钟时,立即按原路以比赛时的速度返回,则小亮再经过多少分钟时两人相距75米?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海门市二模)如图,一次函数y=mx+3+4m(m<0)的图象经过定点A,与x轴交于点B,与y轴交于点E,AD⊥y轴于点D,将射线AB沿直线AD翻折,交y轴于点C.
(1)用含m的代数式分别表示点B,点E的坐标;
(2)若△ABC中AC边上的高为5,求m的值;
(3)若点P为线段AC中点,是否存在m的值,使△APD与△ABD相似?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案