精英家教网 > 初中数学 > 题目详情
(2007•威海)如图,一条街道旁有A,B,C,D,E五幢居民楼.某大桶水经销商统计各楼居民每周所需大桶水的数量如下表:
楼号ABCDE
大桶水数/桶3855507285
他们计划在这五幢楼中租赁一间门市房,设立大桶水供应点.若仅考虑这五幢楼内的居民取水所走路程之和最小,可以选择的地点应在( )
A.B楼
B.C楼
C.D楼
D.E楼
【答案】分析:此题为数学知识的应用,由题意设立大桶水供应点,肯定要尽量缩短居民取水所走路程之间的里程,即需应用两点间线段最短定理来求解.
解答:解:设AB=a,BC=b,CD=c,DE=d.每户居民每次取一桶水.
以点A为取水点,则五幢楼内的居民取水所走路程之和=55AB+50AC+72AD+85AE=262a+207b+157c+85d,
以点B为取水点,则五幢楼内的居民取水所走路程之和=38AB+50BC+72BD+85BE=38a+207b+157c+85d,
以点C为取水点,则五幢楼内的居民取水所走路程之和=38AC+55BC+72CD+85CE=38a+93b+157c+85d,
以点D为取水点,则五幢楼内的居民取水所走路程之和=38AD+55BD+50CD+85DE=38a+93b+143c+85d,
以点E为取水点,则五幢楼内的居民取水所走路程之和=38AE+55BE+50CE+72DE=38a+93b+143c+215d,
以点D为取水点,五幢楼内的居民取水所走路程之和最小.
故选C.
点评:此题为数学知识的应用,考查知识点两点之间线段最短.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2007•威海)如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年高中段自主招生科学素养模拟卷(数学部分)(解析版) 题型:解答题

(2007•威海)如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年山东省威海市中考数学试卷(解析版) 题型:解答题

(2007•威海)如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《锐角三角函数》(08)(解析版) 题型:解答题

(2007•威海)如图,一条小船从港口A出发,沿北偏东40°方向航行20海里后到达B处,然后又沿北偏西30°方向航行10海里后到达C处,问此时小船距港口A多少海里?(结果精确到1海里;参考数据:以下数据可以选用:sin40°≈0.6428,cos40°≈0.7660,tan40°≈0.8391,≈1.732)

查看答案和解析>>

科目:初中数学 来源:2007年山东省威海市中考数学试卷(解析版) 题型:填空题

(2007•威海)如图,AB是⊙O的直径,点C、D、E都在⊙O上,若∠C=∠D=∠E,则∠A+∠B=    度.

查看答案和解析>>

同步练习册答案