【题目】综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.
(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB=__________;
(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;
(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.
【答案】AB=;
【解析】试题分析:(1)如图,过点A、B分别作点C所在横线的垂线,垂足分别为D、E,然后证明△ADC≌△CEB,从而可得CE=AD=3,CD=BE=2,由勾股定理求得AC,BC的长,再由勾股定理即可求得AB的长;
(2)如图所示,过点E作横线的垂线,然后证明△DME∽△ENF,再根据相似三角形的性质进行推导即可得;
(3)连接DN与EG交于点P,根据相似三角形的性质即可得.
试题解析:(1)过点A、B分别作点C所在横线的垂线,垂足分别为D、E,
∴∠ADC=∠BEC=90°,AD=3,BE=2,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,∴∠ACD+∠BCE=90°,
∴∠DAC=∠ECB,
∵AC=BC,
∴△ADC≌△CEB,∴CE=AD=3,CD=BE=2,
∴AC=BC= ,∴AB=,
故答案为: ;
(2)过点E作横线的垂线,交l1,l2于点M,N,
∴∠DME=∠EDF= 90°,
∵∠DEF=90°,
∴∠2+∠3=90°,
∵∠1+∠3=90°,
∴∠1=∠2,
∴△DME∽△ENF ,
∴,
∵EF=2DE,
∴,
∵ME=2,EN=3,
∴NF=4,DM=1.5,
根据勾股定理得DE=2.5,EF=5, ;
(3)连接DN,交EG于点P,
∵EG//DM,∴△DMN∽△PEN,
∴PE:DM=EN:MN,即PE:1.5=3:5,∴PE=0.9,
同理PG=1.6,∴EG=PE+PG=2.5.
科目:初中数学 来源: 题型:
【题目】甲乙两车从A市去往B市,甲比乙出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象,请结合图象回答下列问题:
(1)A、B两市的距离是 千米,甲到B市后 小时乙到达B市;
(2)求甲车返回时的路程s(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;
(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2-4x+3.
(1)在网格中,画出该函数的图象.
(2)(1)中图象与轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,再从中任意摸出1个球是白球的概率为.
(1)试求袋中蓝球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因为a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根据上面的解题思路与方法,解决下列问题:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=5,两正方形的面积和S1+S2=17,求图中阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
【1】求证:∠DAF=∠CDE
【2】问△ADF与△DEC相似吗?为什么?
【3】若AB=4,AD=3,AE=3,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于二次函数y=ax2+bx+c的图象有下列命题:
①当c=0时,函数的图象经过原点;
②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;
③函数图象最高点的纵坐标是;
④当b=0时,函数的图象关于y轴对称.
其中正确命题的个数是( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com