精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(
A.68°
B.20°
C.28°
D.22°

【答案】D
【解析】解:∵四边形ABCD为矩形, ∴∠BAD=∠ABC=∠ADC=90°,
∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,
∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,
∵∠2=∠1=112°,
而∠ABD=∠D′=90°,
∴∠3=180°﹣∠2=68°,
∴∠BAB′=90°﹣68°=22°,
即∠α=22°.
故选D.

【考点精析】本题主要考查了旋转的性质的相关知识点,需要掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现有一根长为1米的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复截取,则第n(n为正整数)次截取后,此木杆剩下的长度为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

1个等式:a1==

2个等式:a2==

3个等式:a3==

4个等式:a4==

按上述规律,回答以下问题:

(1)用含n的代数式表示第n个等式:an=_____=_____

(2)式子a1+a2+a3+…+a20=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:

类别

彩电

冰箱

洗衣机

进价(元/台)

2000

1600

1000

售价(元/台)

2300

1800

1100

若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.
(1)商店至多可以购买冰箱多少台?
(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】O为直线AB上一点,过点O作射线OC,使∠BOC=65°.将一直角三角板的直角顶点放在点O处.

(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=   

(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON=   CON=   

(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=5°,求∠AOM.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=105°,在BCCD上分别找一点MN,使得△AMN周长最小,则∠AMN+∠ANM的度数为 ( )

A. 100° B. 105° C. 120° D. 150°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图,若∠AOC=40°,求∠DOE的度数;

(2)如图,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)

(3)将图中的∠COD绕顶点O顺时针旋转至图的位置,OE平分∠BOC.

探究∠AOC∠DOE的度数之间的关系,写出你的结论,并说明理由;

∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF∠DOE的度数之间的关系,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=3,点DAB的中点,点E为线段BC上的点,连接DE,把△BDE沿着DE翻折得△B1DE

(1)当ADB1C构成的四边形为平行四边形,求DE的长;

(2)当DB1AC时,求△DE B1和△ABC重叠部分的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n相伴数对,记为(m,n).

(1)若(m,1)是相伴数对,则m=_____

(2)(m,n)是相伴数对,则代数式m﹣[n+(6﹣12n﹣15m)]的值为_____

查看答案和解析>>

同步练习册答案