精英家教网 > 初中数学 > 题目详情
(2013•广州)已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△A′BD.
(1)利用尺规作出△A′BD.(要求保留作图痕迹,不写作法);
(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.
分析:(1)首先作∠A′BD=∠ABD,然后以B为圆心,AB长为半径画弧,交BA′于点A′,连接BA′,DA′,即可作出△A′BD.
(2)由四边形ABCD是平行四边形与折叠的性质,易证得:∠BA′D=∠C,A′B=CD,然后由AAS即可判定:△BA′E≌△DCE.
解答:解:(1)如图:①作∠A′BD=∠ABD,
②以B为圆心,AB长为半径画弧,交BA′于点A′,
③连接BA′,DA′,
则△A′BD即为所求;

(2)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠C,
由折叠的性质可得:∠BA′D=∠BAD,A′B=AB,
∴∠BA′D=∠C,A′B=CD,
在△BA′E和△DCE中,
∠BA′E=∠C
∠BEA′=∠DEC
A′B=CD

∴△BA′E≌△DCE(AAS).
点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•广州)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.
(1)求船P到海岸线MN的距离(精确到0.1海里);
(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.
(1)当OC=2
2
时(如图),求证:CD是⊙O的切线;
(2)当OC>2
2
时,CD所在直线于⊙O相交,设另一交点为E,连接AE.
①当D为CE中点时,求△ACE的周长;
②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案