【题目】矩形AOBC中,OB=4,OA=3.分别以OB、OA所在直线为x轴、y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B、C重合).过点F的反比例函数y=(k>0)的图象与边AC交于点E.
(1)当点F运动到边BC的中点时,点E的坐标为__________;
(2)连接EF,求∠EFC的正切值;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求BG的长度.
【答案】(1)E(2,3);(2);(3).
【解析】
(1)先确定出点C坐标,进而得出点F坐标,即可求出反比例函数解析式,再根据E点纵坐标为3即可确定E点坐标;
(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;
(3)过点E作EH⊥OB于H,先判断出△EHG∽△GBF,根据相似三角形对应边成比例即可求出BG.
解:(1)∵OA=3,OB=4,
∴B(4,0),C(4,3),
∵F是BC的中点,
,
∵F在反比例函数图象上,
,
∴反比例函数的解析式为,
∵E点的纵坐标为3,
∴E(2,3);
(2)∵F点的横坐标为4,
,
∵E的纵坐标为3,
在Rt△CEF中,;
(3)如图,由(2)知,,
过点E作EH⊥OB于H,
∴EH=OA=3,∠EHG=∠GBF=90°,
∴∠EGH+∠HEG=90°,
由折叠知,,,∠EGF=∠C=90°,
∴∠EGH+∠BGF=90°,
∴∠HEG=∠BGF,
∵∠EHG=∠GBF=90°,
∴△EHG∽△GBF,
,
,即.
科目:初中数学 来源: 题型:
【题目】某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有辆货车未出租,日租金总收入为元;旺季所有的货车每天能全部租出,日租金总收入为元.
(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?
(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨元,每天租出去的货车就会减少辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC和CD上,下列结论:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正确的序号是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,已知点A(-1,0), B(0,),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校数学兴趣小组的同学要测量建筑物的高度,如图,建筑物前有一段坡度为的斜坡,小明同学站在斜坡上的点处,用测角仪测得建筑物屋顶的仰角为,接着小明又向下走了米,刚好到达坡底处,这时测到建筑物屋顶的仰角为,、、、、、在同一平面内.若测角仪的高度米,则建筑物的高度约为( ).(精确到0.1米,参考数据:,,)
A.38.6B.39.0C.40.0D.41.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com