A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 ①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;
③可以直接求出FC的长,计算S△ACF≠1,错误;
④根据正方形边长为2,分别计算CE和AF的长得结论正确;还可以利用图2证明△ADF≌△CDN得:CN=AF,由CE=$\frac{1}{2}$CN=$\frac{1}{2}$AF;
⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,所以⑤也正确.
解答 解:①②如图1,∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,∠BAD=90°,
∵AE平分∠DAC,
∴∠FAD=∠CAF=22.5°,
∵BH=DF,
∴△ABH≌△ADF,
∴AH=AF,∠BAH=∠FAD=22.5°,
∴∠HAC=∠FAC,
∴HM=FM,AC⊥FH,
∵AE平分∠DAC,
∴DF=FM,
∴FH=2DF=2BH,
故选项①②正确;
③在Rt△FMC中,∠FCM=45°,
∴△FMC是等腰直角三角形,
∵正方形的边长为2,
∴AC=2$\sqrt{2}$,MC=DF=2$\sqrt{2}$-2,
∴FC=2-DF=2-(2$\sqrt{2}$-2)=4-2$\sqrt{2}$,
S△AFC=$\frac{1}{2}$CF•AD≠1,
所以选项③不正确;
④AF=$\sqrt{A{D}^{2}+D{F}^{2}}$=$\sqrt{{2}^{2}+(2\sqrt{2}-2)^{2}}$=2$\sqrt{4-2\sqrt{2}}$,
∵△ADF∽△CEF,
∴$\frac{AD}{CE}=\frac{AF}{FC}$,
∴$\frac{2}{CE}=\frac{2\sqrt{4-2\sqrt{2}}}{4-2\sqrt{2}}$,
∴CE=$\sqrt{4-2\sqrt{2}}$,
∴CE=$\frac{1}{2}$AF,
故选项④正确;
⑤延长CE和AD交于N,如图2,
∵AE⊥CE,AE平分∠CAD,
∴CE=EN,
∵EG∥DN,
∴CG=DG,
在Rt△FEC中,EG⊥FC,
∴EG2=FG•CG,
∴EG2=FG•DG,
故选项⑤正确;
本题正确的结论有4个,
故选C.
点评 本题是四边形的综合题,综合考查了正方形、相似三角形、全等三角形的性质和判定;求边时可以利用三角形相似列比例式,也可以直接利用同角三角函数列式计算;同时运用了勾股定理求线段的长,勾股定理在正方形中运用得比较多.
科目:初中数学 来源: 题型:解答题
甲 | 乙 | |
进件(元/件) | 15 | 35 |
售价(元/件) | 20 | 45 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com