精英家教网 > 初中数学 > 题目详情

【题目】AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD与△ACD的周长之差为cm.

【答案】2
【解析】∵AD是边BC上的中线,
∴BD=CD.
∵△ABD的周长为:AB+BD+AD,
△ACD的周长为:AC+CD+AD,
∴△ABD与△ACD的周长之差为:(AB+BD+AD)-(AC+CD+AD)=AB-AC,
又∵AB=5cm,AC=3cm,
∴AB-AC=2(cm).
即△ABD与△ACD的周长之差为2cm.
【考点精析】解答此题的关键在于理解三角形的“三线”的相关知识,掌握1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1时30分时,时钟的时针与分针的夹角是______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.

1)求甲、乙两种门票每张各多少元?

2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:

1)请问采摘的黄瓜和茄子各多少千克?

2)这些采摘的黄瓜和茄子可赚多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,ABBC=4:3,周长为28cm,则AD= ____cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买AB两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1A型污水处理设备和2B型污水处理设备每周可以处理污水640吨,2A型污水处理设备和3B型污水处理设备每周可以处理污水1080吨.

1)求AB两型污水处理设备每周分别可以处理污水多少吨?

2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列证明过程. 如图,在△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,说明ED=EF.
解:∵∠DEC=∠B+∠BDE (),
又∵∠DEF=∠B(已知),
∴∠=∠(等式性质).
在△EBD与△FCE中,
=∠(已证),
=(已知),
∠B=∠C(已知),
∴△EBD≌△FCE().
∴ED=EF ().

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校规划在一块长AD18m,宽AB13m的长方形场地ABCD上,设计分别与ADAB平行的横向通道和纵向通道,其余部分铺上草皮.

1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=89,问通道的宽是多少?

2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知REPQ于点ECFPQ于点F,求花坛RECF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?

查看答案和解析>>

同步练习册答案