16£®Èçͼ£¬ÒÑÖªÕý·½ÐÎABCD¶¥µãA£¨0£¬0£©£¬B£¨4£¬0£©£¬Ò»·´±ÈÀýº¯ÊýͼÏó¹ý¶¥µãC£¬¶¯µãPÒÔÿÃë1¸öµ¥Î»µÄËٶȴӵãA³ö·¢ÑØAB·½ÏòÔ˶¯£¬Í¬Ê±¶¯µãQÒÔÿÃë4¸öµ¥Î»µÄËٶȴӵãD³ö·¢ÑØDC-CB-BA·½ÏòÕÛÏßÔ˶¯£¬µ±µãPÓëµãQÏàÓöʱ¾ùÍ£Ö¹Ô˶¯£¬ÉèµãPµÄÔ˶¯Ê±¼äΪtÃ룮

£¨1£©¸Ã·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{16}{x}$£»
£¨2£©ÈôËıßÐÎPBQDΪƽÐÐËıßÐΣ¬ÇótµÄÖµ£»
£¨3£©Èô¡÷BDQµÄÃæ»ýΪS£¬Çó³öSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬Ö¸³öÏàÓ¦tµÄÈ¡Öµ·¶Î§£¬²¢Ö±½Óд³öSµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣻
£¨2£©µ±DQ=PB£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣻
£¨3£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¢Ùµ±0£¼t¡Ü1ʱ£¬S=$\frac{1}{2}$DQ•CB£®¢Úµ±1£¼t¡Ü2ʱ£¬S=$\frac{1}{2}$•BQ•AD£®¢Ûµ±2£¼t¡Ü$\frac{12}{5}$ʱ£¬S=$\frac{1}{2}$•BQ•AD£®

½â´ð ½â£º£¨1£©Éè·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=$\frac{k}{x}$£¬
¡ß·´±ÈÀýº¯Êý¾­¹ýµãC£¨4£¬4£©£¬
¡àk=16£¬
¡à·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=$\frac{16}{x}$£¬
¹Ê´ð°¸Îªy=$\frac{16}{x}$£®

£¨2£©ÓÉÌâÒâAP=t£¬DQ=4t£¬
¡ßËıßÐÎPBQDÊÇƽÐÐËıßÐΣ¬
¡àDQ=PB£¬
¡à4t=4-t£¬
¡àt=$\frac{4}{5}$£¬
¡àµ±t=$\frac{4}{5}$ʱ£¬ËıßÐÎPBQDÊÇƽÐÐËıßÐΣ®

£¨3£©µ±µãPÓëµãQÏàÓöʱ£¬t+4t=12£¬t=$\frac{12}{5}$£¬
¢Ùµ±0£¼t¡Ü1ʱ£¬
S=$\frac{1}{2}$DQ•CB=$\frac{1}{2}$•4t•4=8t£®

¢Úµ±1£¼t¡Ü2ʱ£¬
S=$\frac{1}{2}$•BQ•AD=$\frac{1}{2}$•£¨8-4t£©•4=16-8t£®

¢Ûµ±2£¼t¡Ü$\frac{12}{5}$ʱ£¬
S=$\frac{1}{2}$•BQ•AD=$\frac{1}{2}$•£¨4t-8£©•4=8t-16£¬
¡àS=$\left\{\begin{array}{l}{8t}&{£¨0£¼t¡Ü1£©}\\{16-8t}&{£¨1£¼t¡Ü2£©}\\{8t-16}&{£¨2£¼t¡Ü\frac{12}{5}£©}\end{array}\right.$£®
µ±t=1ʱ£¬¡÷BDQµÄÃæ»ý×î´ó£®

µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯Êý×ÛºÏÌâ¡¢Õý·½ÐεÄÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÅж¨¡¢Èý½ÇÐεÄÃæ»ýµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼¿¼Ë¼¿¼ÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨-2x3£©2•£¨-x2£©¡Â[£¨-x£©2]3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬µãC¡¢E·Ö±ðÊÇÏ߶ÎBF¡¢Ï߶ÎCDµÄÖе㣬AD¡ÎBF£®
£¨1£©ÇóÖ¤£º¡÷ADE¡Õ¡÷FCE£»
£¨2£©ÇëÎÊËıßÐÎABCDÊÇƽÐÐËıßÐÎÂð£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÏÈ»¯¼ò£¨$\frac{{m}^{2}+4m}{m-2}$-m-2£©¡Â$\frac{{m}^{2}+2m+1}{m-2}$£¬È»ºó´Ó-2£¼m¡Ü2ÖÐÑ¡Ò»¸öºÏÊʵÄÕûÊý×÷ΪmµÄÖµ´úÈëÇóÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬PÊÇË«ÇúÏßy=$\frac{6}{x}$£¨x£¾0£©ÉÏÈÎÒâÒ»µã£¬×÷PB¡ÍxÖáÓÚB£¬PA¡ÍyÖáÓÚA£¬CÊÇƽÐÐËıßÐÎOAPBÄÚÈÎÒâÒ»µã£¬Á¬½ÓCA¡¢CO¡¢CB¡¢CP£¬Ôò¡÷OCBÓë¡÷ACPµÄÃæ»ýºÍµÈÓÚ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®2-2µÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{1}{4}$B£®-4C£®4D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬ÒÑÖªÖ±ÏßCD¡¢EFÏཻÓÚµãO£¬OA¡ÍOB£¬ÇÒOEƽ·Ö¡ÏAOC£¬Èô¡ÏEOC=60¡ã£¬Ôò¡ÏBOF=30¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®¹Û²ìÏÂÁÐËãʽ£º
ÇëÄã¼ÆË㣺£¨1-x£©£¨1+x£©£¬£¨1-x£©£¨1+x+x2£©£¬¡­£¬
²ÂÏ루1-x£©£¨1+x+x2+¡­+xn£©µÄ½á¹ûÊÇ1-xn+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®°´ÒªÇóÍê³ÉÏÂÁи÷Ì⣮
£¨1£©½â²»µÈʽ×鲢д³öÆäÕûÊý½â
$\left\{\begin{array}{l}{5x+2¡Ý3£¨x-1£©}\\{1-\frac{2x+5}{3}£¾x-2}\end{array}\right.$
£¨2£©½âÏÂÁв»µÈʽ×é
$\left\{\begin{array}{l}{\frac{1-2x}{3}-\frac{4-3x}{6}¡Ý\frac{x-2}{2}}\\{2x-7¡Ü3£¨x-1£©}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸