精英家教网 > 初中数学 > 题目详情

问题:如图1,在等边三角形ABC内有一点P,且PA=2, PB=, PC=1.求∠BPC度数的大小和等边三角形ABC的边长.

李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠BP′A=150°,而∠BPC=∠BP′A=150°.进而求出等边△ABC的边长为.问题得到解决.

请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.?
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为
7
,问题得到解决.
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•海淀区二模)阅读下面材料:
小明遇到这样一个问题:
我们定义:如果一个图形绕着某定点旋转一定的角度α (0°<α<360°) 后所得的图形与原图形重合,则称此图形是旋转对称图形.如等边三角形就是一个旋转角为120°的旋转对称图形.如图1,点O是等边三角形△ABC的中心,D、E、F分别为AB、BC、CA的中点,请你将△ABC分割并拼补成一个与△ABC面积相等的新的旋转对称图形.

小明利用旋转解决了这个问题,图2中阴影部分所示的图形即是与△ABC面积相等的新的旋转对称图形.
请你参考小明同学解决问题的方法,利用图形变换解决下列问题:
如图3,在等边△ABC中,E1、E2、E3分别为AB、BC、CA 的中点,P1、P2,M1、M2,N1、N2分别为AB、BC、CA的三等分点.
(1)在图3中画出一个和△ABC面积相等的新的旋转对称图形,并用阴影表示(保留画图痕迹);
(2)若△ABC的面积为a,则图3中△FGH的面积为
a
7
a
7

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•宜兴市二模)阅读下面材料:
小明同学遇到这样一个问题:定义:如果一个图形绕着某定点旋转一定的角度α (0°<α<360°) 后所得的图形与原图形重合,则称此图形是旋转对称图形.如等边三角形就是一个旋转角为120°的旋转对称图形.如图1,点O是等边三角形△ABC的中心,D、E、F分别为AB、BC、CA的中点,请你将△ABC分割并拼补成一个与△ABC面积相等的新的旋转对称图形.小明利用旋转解决了这个问题(如图2所示).图2中阴影部分所示的图形即是与△ABC面积相等的新的旋转对称图形.请你参考小明同学解决问题的方法,利用图形变换解决下列问题:
如图3,在等边△ABC中,E1、E2、E3分别为AB、BC、CA 的中点,P 1、P2,M1、M2,N1、N2分别为AB、BC、CA的三等分点.
(1)在图3中画-个和△ABC面积相等的新的旋转对称图形,并用阴影表示(保留画图痕迹);
(2)若△ABC的边长为6,则图3中△ABM1的面积为
3
3
3
3

(3)若△ABC的面积为a,则图3中△FGH的面积为
a
7
a
7

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料?:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形(可证),而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而把AB放在Rt△APB(可证得)中,用勾股定理求出等边△ABC的边长为
7
.问题得到解决.?
[思路分析]首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究.旋转60度以后BP就成了BP′,PC成了P′A,借助等量关系BP′=PP′,于是△APP′就可以计算了.
解决问题:
请你参考李明同学旋转的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【问题】如图甲,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.
【探究】解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.
(1)△P′PB是
 
三角形,△PP′A是
 
三角形,∠BPC=
 
°;
(2)利用△BPC可以求出△ABC的边长为
 

【拓展应用】
如图丙,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1;
(3)求∠BPC度数的大小;
(4)求正方形ABCD的边长.
精英家教网

查看答案和解析>>

同步练习册答案