精英家教网 > 初中数学 > 题目详情
(2007•陇南)如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:≈1.41,≈1.73,≈2.24)

【答案】分析:(1)由已知可得A(-3,0)、B(1,0),代入抛物线解析式,可求m,n值;(2)由已知的二次函数解析式可求P,C两点坐标,从而可求直线PC的解析式;(3)关键是求点A到直线PC的距离,再与圆的半径2.5进行比较;为此,过点A作AE⊥PC,垂足为E,由△COD∽△AED,求出两个三角形中相关线段长,利用相似比求AE;
解答:解:(1)由已知条件可知:抛物线y=x2+mx+n经过A(-3,0)、B(1,0)两点.

解得m=1,n=-

(2)∵y=x2+x-
∴P(-1,-2),C
设直线PC的解析式是y=kx+b,则
解得k=,b=-
∴直线PC的解析式是y=x-

(3)如图,过点A作AE⊥PC,垂足为E.
设直线PC与x轴交于点D,则点D的坐标为(3,0).
在Rt△OCD中,
∵OC=,OD=3,

∵OA=3,OD=3,
∴AD=6.
∵∠COD=∠AED=90°,∠CDO公用,
∴△COD∽△AED.
,即
∴AE=≈2.688>2.5
∴以点A为圆心、直径为5的圆与直线PC相离.
点评:本题考查了抛物线解析式的求法,抛物线上特殊点的运用,及直线与圆的位置关系的判定.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2007•陇南)如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2007•陇南)如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?

查看答案和解析>>

科目:初中数学 来源:2010年湖北省宜昌市枝江市雅畈中学九年级中考数学强化训练专题3 二次函数(解析版) 题型:解答题

(2007•陇南)如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中数学 来源:2007年甘肃省陇南市中考数学试卷(解析版) 题型:解答题

(2007•陇南)如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中数学 来源:2007年甘肃省陇南市中考数学试卷(解析版) 题型:解答题

(2007•陇南)如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?

查看答案和解析>>

同步练习册答案