【题目】如图,以的一边为直径的交于点,点是弧的中点,连接并延长交于点.
(1)求证:;
(2)①若,当弧的长度是______时,四边形是菱形;
②在①的情况下,当______时,是的切线.
【答案】(1)见解析;(2)①,②2
【解析】
(1)连接,根据点E是弧BD的中点得到∠FAE=∠BAE,由AB是直径可得∠AEB=∠AEF=90°,再根据ASA证明即可得到结论;
(2)①根据菱形的性质得到∠BOE=∠EOD=∠DOA=60°,再运用弧长公式即可求出弧AD的长;
②由①得∠A=60°可求出∠C=30°,利用直角三角形中30°角所对的直角边等于斜边的一半求出AC=4,再根据CF=AC-AF求解即可.
(1)连接AE,如图所示,
∵点E是弧BD的中点,
∴弧BE=弧DE
∴∠FAE=∠BAE,
∵AB是圆O的直径,
∴∠AEB=∠AEF=90°
在△AEF和△AEB中,
∴△AEF≌△AEB
∴AF=AB
(2)①假设四边形FDOE是菱形,则有
,
,
,
∴弧AD的长为:;
故弧AD的长度是时,四边形FDOE是菱形;
②若CB是的切线,则有∠ABC=90°,
由①知∠A=60°,
∴∠ACB=30°,
∵AB=2,
∴AC=2AB=4
又AF=AB=2
∴CF=AC-AF=4-2=2,
∴当CF=2时,BC是圆O的切线.
科目:初中数学 来源: 题型:
【题目】为引领学生感受诗词之美,某校团委组织了一次全校800名学生参加的“中国诗词大赛”,赛后发现有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 5 | 0.05 |
60≤x<70 | 15 | 0.15 |
70≤x<80 | 20 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 25 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;并补全频数分布直方图;
(2)这100名学生成绩的中位数会落在分数段;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的800名学生中成绩“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与y轴交于点A(0,6),与x轴交于点B(﹣2,0),C(6,0).
(1)直接写出抛物线的解析式及其对称轴;
(2)如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P作PD⊥AC于点E,交x轴于点D,过点P作PG∥AB交AC于点F,交x轴于点G.设线段DG的长为d,求d与m的函数关系式,并注明m的取值范围;
(3)在(2)的条件下,若△PDG的面积为,
①求点P的坐标;
②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得△ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=kx﹣与抛物线y=ax2+bx+交于点A、C,与y轴交于点B,点A的坐标为(2,0),点C的横坐标为﹣8.
(1)请直接写出直线和抛物线的解析式;
(2)点D是直线AB上方的抛物线上一动点(不与点A、C重合),作DE⊥AC于点E.设点D的横坐标为m.求DE的长关于m的函数解析式,并写出DE长的最大值;
(3)平移△AOB,使平移后的三角形的三个顶点中有两个在抛物线上,请直接写出平移后的点A对应点A′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.
a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部门成绩如下:
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙两部门成绩的平均数、方差、中位数如下:
平均数 | 方差 | 中位数 | |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年该单位参赛员工进入复赛的出线成绩如下:
2014年 | 2015年 | 2016年 | 2017年 | 2018年 | |
出线成绩(百分制) | 79 | 81 | 80 | 81 | 82 |
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)可以推断出选择 部门参赛更好,理由为 ;
(3)预估(2)中部门今年参赛进入复赛的人数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举办学生综合素质大赛,分“单人项目”和“双人项目”两种形式,比赛题目包括下列五类:.人文艺术;.历史社会;.自然科学;.天文地理;.体育健康.
(1)若小明参加“单人项目”,他从中抽取一个题目,那么恰好抽中“自然科学”类题目的概率为_____.
(2)小林和小丽参加“双人项目”,比赛规定:同一小组的两名同学的题目类型不能相同,且每人只能抽取一次,求他们抽到“天文地理”和“体育健康”类题目的概率是多少?(用画树状图或列表的方法求解).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com