【题目】如图,在△ABC中,∠C=90°,∠A=30°,BD为△ABC的角平分线,若AC= 12 ,则在△ABD中AB边上的高为( )
A.3B.4C.5D.6
科目:初中数学 来源: 题型:
【题目】已知二次函数y=(k是常数).
(1)若该函数的图象与x轴有两个不同的交点,试求k的取值范围;
(2)若点(1,k)在某反比例函数图象上,要使该反比例函数和二次函数y=都是y随x的增大而增大,求k应满足的条件及x的取值范围;
(3)若抛物线y=与x轴交于A(,0)、B(,0)两点,且<,=34,若与y轴不平行的直线y=ax+b经过点P(1,3),且与抛物线交于(,)、(,)两点,试探究是否为定值,并写出探究过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1,抛物线与轴交于点、,与轴交于点,且,.
(1)求抛物线解析式;
(2)如图2,点是抛物线第一象限上一点,连接交轴于点,设点的横坐标为,线段长为,求与之间的函数关系式;
(3)在(2)的条件下,过点作直线轴,在上取一点(点在第二象限),连接,使,连接并延长交轴于点,过点作于点,连接、、.若时,求值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是 = =;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,曲线AB是抛物线的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线的一部分.曲线AB与BC组成图形W由点C开始不断重复图形W形成一组“波浪线”.若点,在该“波浪线”上,则m的值为________,n的最大值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举办学生“四大名著讲解大赛”,比赛项目为:A.《三国演义》;B. 《水浒传》;C.《西游记》;D.《红楼梦》.比赛形式分“单人组”和“双人组”.
(1)学生甲参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中《红楼梦》的概率是多少?
(2)学生乙和学生丙组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则学生乙和学生丙都没有抽到《西游记》的概率是多少?请用画树状图或列表的方法进行说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是( )
A. B. C. D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是边长为的等边三角形,动点,同时从,两点出发,分别沿,匀速运动,其中点运动的速度是,点运动的速度是,当点到达点时,,两点都停止运动,设运动时间为,解答下列问题:
(1)如图①,当为何值时,;
(2)如图②,当为何值时,为直角三角形;
(3)如图③,作交于点,连接,当为何值时,与相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有若干间标准房,当标准房的价格为元时,每天入住的国间数为间,经市场调查表明,该宾馆每间标准房的价格在元之间(含元,元)浮动时,每天人住的房间数(间)与每间标准房的价格(元)的数据如下表:
(元) | …… | 190 | 200 | 210 | 220 | …… |
(元) | …… | 65 | 60 | 55 | 50 | …… |
(1)根据所给数据在坐标系中描出相应的点,并画出图象.
(2)猜想(1)中的图象是什么函数的图象,求关于的函数表达式,并写出自变量的取值范围.
(3)设客房的日营业额为W (元).若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com