精英家教网 > 初中数学 > 题目详情
已知:如图,Rt△ABC中,CD是斜边AB上的高.求证:AC2=AD·AB
证明见解析.

试题分析:根据相似三角形的判定定理得出△ACD∽△ABC,再根据相似三角形的对应边成比例即可得出结论.
试题解析:∵△ABC是直角三角形,CD⊥AB,
∴∠A+∠B=90°,∠A+∠ACD=90°,
∴∠B=∠ACD,
∴△ACD∽△ABC,

∴AC2=AD•AB.
考点: 相似三角形的判定与性质
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小明对直角三角形很感兴趣. △ABC中,∠ACB=90°,D是AB上任意一点,连接DC,作DE⊥DC,EA⊥AC,DE与AE交于点E.请你跟着他一起解决下列问题:

(1)如图1,若△ABC是等腰直角三角形,则DE,DC有什么数量关系?请给出证明.
(2)如果换一个直角三角形,如图2,∠CBA=30°,则DE,DC又有什么数量关系?请给出证明.
(3)由(1)、(2)这两种特殊情况,小明提出问题:如果直角三角形ABC中,BC=mAC,那DE, DC有什么数量关系?请给出证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

老师要求同学们在图①中内找一点P,使点P到OM、ON的距离相等.
小明是这样做的:在OM、ON上分别截取OA=OB,连结AB,取AB中点P,点P即为所求.
请你在图②中的内找一点P,使点P到OM的距离是到ON距离的2倍.要求:简单叙述做法,并对你的做法给予证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?

(2)如果两楼之间相距MN=m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,SDEF∶SABF=4∶25,求DE∶EC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.

(1)求证:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若△ABC∽△A′B′C′,∠A=40°,∠B=60°,则∠C′等于 (   )
A.20°;B.40°;C.60°;D.80°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知等腰△ABC的面积为16cm2,点D,E分别是AB,AC边的中点,则梯形DBCE的面积为___     ___cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图:在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,且AD∶AC=2∶3,那么DE∶BC等于(   )

A.3∶1      B.1∶3            C.3∶4     D.2∶3

查看答案和解析>>

同步练习册答案