【题目】如图,等腰与等腰,,,,,垂足为,直线交于点.将绕点顺时针旋转,则的长的最大值是______.
【答案】
【解析】
延长ED到N,使得DN=DE,连接CN,BN,延长BN交AE于M.取BC的中点F,连接AF,OF.利用矩形的性质证明OD∥BN,推导出OB=OE,求出OF,AF即可解决问题.
如图,延长ED到N,使得DN=DE,连接CN,BN,延长BN交AE于M.取BC的中点F,连接AF,OF.
∵CD⊥EN,DN=DE,
∴CN=CE,
∵DC=DE,∠CDE=90°,
∴∠DCE=∠DCN=45°,
∴∠ACB=∠NCE=90°,
∴∠BCN=∠ACE,
在△BCN和△ACE中,
,
∴△BCN≌△ACE(SAS),
∴∠BNC=∠AEC,
∵∠BNC+∠CNM=180°,
∴∠CNM+∠AEC=180°,
∴∠ECN+∠NME=180°,
∵∠ECN=90°,
∴∠NME=90°,
∵DH⊥AE,
∴∠NME=∠DHE=90°,
∴OD∥BN,
∵DN=DE,
∴OB=OE,
∵BF=CF,
∴OF=EC,
∵CD=DE=6,∠CDE=90°,
∴EC=6,
∴OF=3,
在Rt△ACF中,∵AC=12,CF=6,
∴,
∵OA≤AF+OF,
∴OA≤6+3,
∴OA的最大值为6+3.
故答案为6+3.
科目:初中数学 来源: 题型:
【题目】如图,点A是以BC为直径的半圆的中点,连接AB,点D是直径BC上一点,连接AD,分别过点B、点C向AD作垂线,垂足为E和F,其中,EF=2,CF=6,BE=8,则AB的长是( )
A.4B.6C.8D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,求旗杆AB的高度约为多少?(保留一位小数,参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的两直角边,分别在轴的负半轴和轴的正半轴上,为坐标原点,,两点的坐标分别为、,抛物线经过点,且顶点在直线上.
(1)求抛物线对应的函数关系式;
(2)若是由沿轴向右平移得到的,当四边形是菱形时,试判断点和点是否在该抛物线上,并说明理由;
(3)在(2)的条件下,若点是所在直线下方抛物线上的一个动点,过点作平行于轴交于.设点的横坐标为,的长度为.求与之间的函数关系式,写出自变量的取值范围,并求取最大值时,点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线交轴于,两点(点在点的左边),交轴正半轴于点.
(1)如图1,当时.
①直接写出点,,的坐标;
②若抛物线上有一点,使,求点的坐标.
(2)如图2,平移直线交抛物线于,两点,直线与直线交于点,若点在定直线上运动,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点 C 为 Rt△ACB 与 Rt△DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD、BE,过点 C 作 CF⊥AD 于点 F,延长 FC 交 BE 于点 G.若 AC=BC=25,CE=15, DC=20,则的值为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,一组同心圆的圆心为坐标原点,它们的半径分别为.按照“加"依次递增; 一组平行线, ..分别过,且与过该点的圆相切.若半径为的圆与在第一象限内交于点,半径为的圆与在第象限内相交于点,半径为的圆与在第一象限内相交于点按照此规律,则点的坐标是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com