Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÎÊÌ⣮
¢Ù
1+
1
12
+
1
22
=1+
1
1
-
1
2
=1+
1
1¡Á2
=1
1
2

¢Ú
1+
1
22
+
1
32
=1+
1
2
-
1
3
=1+
1
2¡Á3
=1
1
6

¢Û
1+
1
32
+
1
42
=1+
1
3
-
1
4
=1+
1
3¡Á4
=1
1
12

¢Ü
1+
1
42
+
1
52
=1+
1
4
-
1
5
=1+
1
4¡Á5
=1
1
20

£¨1£©¸ù¾ÝÉÏÃæÌṩµÄÐÅÏ¢£¬²ÂÏë
1+
1
52
+
1
62
=______£®
£¨2£©ÄãÄܸù¾Ý¸÷µÈʽ·´Ó³µÄ¹ÛÂÉ£¬Ð´³öÓÃn£¨nΪÕýÕûÊý£©±íʾÉÏÊö¹æÂɵĵÈʽÂð£¿
£¨1£©Ô­Ê½=1+
1
5
-
1
6
=1
1
30
£»

£¨2£©ÓÉ·ÖÎöµÃ£ºÌâ¸ÉÖеĹæÂÉ¿ÉÑÔ±íʾΪ£º
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1-
1
n(n+1)
£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÏÂÁÐÎÊÌ⣺
¢Ù
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
£»
¢Ú
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
£»
¢Û
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12
£®
£¨1£©ÇëÄã¸ù¾ÝÉÏÃæÈý¸öµÈʽÌṩµÄÐÅÏ¢£¬²ÂÏë
1+
1
42
+
1
52
µÄ½á¹û£¬²¢ÑéÖ¤£»
£¨2£©ÇëÄã°´ÕÕÉÏÃæ¸÷µÈʽ·´Ó³µÄ¹æÂÉ£¬ÊÔд³öÓú¬nµÄʽ×Ó±íʾµÄµÈʽ£¨nΪÕýÕûÊý£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÏÂÁÐÎÊÌâ¢Ù
1 +
1
12
+
1
22
=1+
1
1
-
1
2
=1
1
2
£»¢Ú
1+
1
22
+
1
32
=1+
1
2
-
1
3
=1
1
6
£»¢Û
1+
1
32
+
1
42
=1+
1
3
-
1
4
=1
1
12
£¬ÇëÄã¸ù¾ÝÉÏÃæÈý¸öµÈʽÌṩµÄÐÅÏ¢£¬²ÂÏë
1 +
1
92
+
1
102
µÄ½á¹ûΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔÙÍê³ÉÌâºóÎÊÌ⣺
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬
1
4¡Á5
=
1
4
-
1
5

£¨1£©ÇëÄã²ÂÏ룺
1
2010¡Á2011
=
 
£®
£¨2£©Èôa¡¢bΪÓÐÀíÊý£¬ÇÒ|a-1|+£¨ab-2£©2=0£¬Çó£º
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+¡­+
1
(a+2009)(b+2009)
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÎÊÌâ
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
£»
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
£»
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12
£®
£¨1£©¸ù¾ÝÉÏÃæÈý¸öµÈʽÌṩµÄÐÅÏ¢£¬Çë²ÂÏë
1+
1
92
+
1
102
=
1
1
90
1
1
90
£®
£¨2£©Çë°´ÕÕÉÏÃæ¸÷µÈʽ·´Ó³µÄ¹æÂÉ£¬ÊÔд³öÓÃn£¨nΪÕýÕûÊý£©±íʾµÄµÈʽ£¬²¢¼ÓÒÔÑéÖ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÎÊÌ⣺
¢Ù
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

¢Ú
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

¢Û
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

¸ù¾ÝÉÏÃæÈý¸öµÈʽÌṩµÄÐÅÏ¢£¬Çë²ÂÏë
1+
1
42
+
1
52
µÄ½á¹û£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸