精英家教网 > 初中数学 > 题目详情

如图,RtABO的两直角边OAOB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,AB两点的坐标分别为(-3,0)、(0,4),抛物线yx2bxc经过点B,且顶点在直线x上.

(1)求抛物线对应的函数关系式;

(2)若把△ABO沿x轴向右平移得到△DCE,点ABO的对应点分别是DCE,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;

(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;

(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点OB不重合),过点M作∥BDx轴于点N,连接PMPN,设OM的长为t,△PMN的面积为S,求St的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

考点:

二次函数综合题。

分析:

(1)根据抛物线y经过点B(0,4),以及顶点在直线x上,得出bc即可;

(2)根据菱形的性质得出CD两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5或2时,y的值即可.

(3)首先设直线CD对应的函数关系式为ykxb,求出解析式,当x时,求出y即可;

(4)利用MNBD,得出△OMN∽△OBD,进而得出,得到ON,进而表示出△PMN的面积,利用二次函数最值求出即可.

解答:

解:(1)∵抛物线y经过点B(0,4)

c=4,

∵顶点在直线x上,

∴所求函数关系式为

(2)在RtABO中,OA=3,OB=4,

AB

∵四边形ABCD是菱形,

BCCDDAAB=5,

CD两点的坐标分别是(5,4)、(2,0),

x=5时,y

x=2时,y

∴点C和点D都在所求抛物线上;

(3)设CD与对称轴交于点P,则P为所求的点,

设直线CD对应的函数关系式为ykxb

解得:

x时,y

P(),

(4)∵MNBD

∴△OMN∽△OBD

ON

设对称轴交x于点F

(PFOM)•OF(t

(

S(-),

=-(0<t<4),

S存在最大值.

S=-(t)2+

∴当S时,S取最大值是

此时,点M的坐标为(0,).

点评:

此题主要考查了二次函数的综合应用,以及菱形性质和待定系数法求解析式,求图形面积最值,利用二次函数的最值求出是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2
+bx+c经过B点,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的顶点A是反比例函数y=
k
x
与一次函数y=-x+(k+1)的图精英家教网象在第四象限的交点,AB⊥x轴于B,且S△ABO=
5
2

(1)求这个反比例函数和一次函数的解析式;
(2)求这个一次函数的图象与坐标轴围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2+bx+c经过B点,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的顶点A是反比例函数y=
k
x
与一次函数y=-x-(k+1)的图象在第二象限的交点.AB⊥x轴于B,且S△ABO=
3
2

(1)求这两个函数的解析式;
(2)求两个函数图象的两个交点A,C的坐标和△AOC的面积;
(3)利用图象判断,当x为何值时,反比例函数的值小于一次函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的顶点A是双曲线y=
k
x
与直线y=-x+(k+1)在第四象限的交点,AB⊥x轴于B,且S△AOB=
3
2
,求这两个函数的解析式.

查看答案和解析>>

同步练习册答案