精英家教网 > 初中数学 > 题目详情
7.如图1,点A在反比例函数y=$\frac{k}{x}$(x>0)的图象上,过点A作AB⊥y轴于点B,△AOB的面积为2.

(1)k=4;
(2)如图2,若⊙A与y轴相切且半径为1,现将⊙A沿反比例图象移动至与x轴相切,则⊙A的一条直径扫过的最大面积是6.

分析 (1)根据反比例函数k的几何意义,列出方程即可解决问题.
(2)如图2中,当直径平行于x轴或平行于y轴时,直径扫过的面积最大,此时直径扫过的面积=平行四边形EFF′E′的面积.

解答 解:(1)如图1中,

∵S△ABO=$\frac{|k|}{2}$,
∴$\frac{|k|}{2}$=2,
∴|k|=4,
∵k>0,
∴k=4,
故答案为4.

(2)如图2中,当直径平行于x轴或平行于y轴时,直径扫过的面积最大.

此时直径扫过的面积=平行四边形EFF′E′的面积=2×(4-1)=6.
故答案为6.

点评 本题考查切线的性质、反比例函数的性质、平行四边形的性质等知识,解题的关键是记住反比例函数的k的几何意义,学会用转化的思想思考问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.上学期期末考试,某小组五位同学的数学成绩分别是90,113,102,90,98,则这五个数据的中位数是(  )
A.90B.98C.100D.105

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,再求值:($\frac{1}{b}$-$\frac{1}{a}$)÷$\frac{{a}^{2}-2ab+{b}^{2}}{{a}^{2}-{b}^{2}}$•$\frac{1}{2a+2b}$,其中a=$\sqrt{2}$+1,b=$\sqrt{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列计算不正确的是(  )
A.m4•m5=m9B.5x-7x=-2x
C.(-x)5÷(-x)2=-x3D.$\frac{{a}^{2}+4a+4}{-{a}^{2}+4}$=$\frac{a+2}{a-2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在△ABC中,AB=AC=4,∠BAC=30°,以AB为斜边作等腰直角△ABD.请画出图形,并直接写出△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,平行四边形ABCD的对角线AC,BD相交于点O,补充下面一个条件,不能判定平行四边形ABCD是菱形的是(  )
A.AB=BCB.AO=BOC.∠DOC=90°D.∠CDO=∠ADO

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图所示,在平面直角坐标系中,矩形ABCD,AB=2,BC=4,点B(1,1).
(1)请直接写出点A,C,D的坐标:A(1,3),C(5,1),D(5,3);
(2)将矩形ABCD向左平移a个单位,得到矩形A′B′C′D′,使点B′,D′恰好同时落在反比例函数y=$\frac{k}{x}$(x<0)的图象上,求矩形ABCD平移的距离a及反比例函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,点A是反比例函数y=$\frac{k}{x}$(k>0)图象第一象限上一点,过点A作AB⊥x轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,若S1-S2的值最大为1,则k的值为4$\sqrt{2}$+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在锐角△ABC中,BC=10,高AD=8,矩形EFPQ的一边QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H.
(1)求证:$\frac{AH}{AD}$=$\frac{EF}{BC}$;
(2)设EF的长为x.
①当x为何值时,矩形EFPQ为正方形?
②当x为何值时,矩形EFPQ的面积最大?并求其最大值.

查看答案和解析>>

同步练习册答案