精英家教网 > 初中数学 > 题目详情
21、(1)如图,直线m表示一条公路,点A,B表示两个村庄.现要在公路m上造一个加油站,并使加油站到两个村庄A,B的距离相等.问加油站应建在何处?请在图上标明这个地点;

(2)如图,请你作出把小船A以B为旋转中心,按顺时针方向旋转90°后的像.
分析:(1)运用线段垂直平分线的性质解题.
(2)网格旋转90°要充分运用网格里的垂直关系解题.
解答:解:(1)
作线段AB的垂直平分线交直线m于点M,点M即为加油站.

(2)
点评:本题考查了垂直平分线性质的运用,网格里的旋转问题,要求学生学会动手操作,学会判断画出的图形是否符合题意.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线OQ的函数解析式为y=x.
下表是直线a的函数关系中自变量x与函数y的部分对应值.
-1  3
 y  8  4  2  0
设直线a与x轴交点为B,与直线OQ交点为C,动点P(m,0)(0<m<3)在OB上移动,过点P作直线l与x轴垂直.
(1)根据表所提供的信息,请在直线OQ所在的平面直角坐标系中画出直线a的图象,并说明点(10,-10)不在直线a的图象上;
(2)求点C的坐标;
(3)设△OBC中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式;
(4)试问是否存在点P,使过点P且垂直于x轴的直线l平分△OBC的面积?若有,求出点P坐标;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线OQ的函数解析式为y=x.
下表是直线a的函数关系中自变量x与函数y的部分对应值.

-1 3
 y 8 4 2 0

设直线a与x轴交点为B,与直线OQ交点为C,动点P(m,0)(0<m<3)在OB上移动,过点P作直线l与x轴垂直.
(1)根据表所提供的信息,请在直线OQ所在的平面直角坐标系中画出直线a的图象,并说明点(10,-10)不在直线a的图象上;
(2)求点C的坐标;
(3)设△OBC中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式;
(4)试问是否存在点P,使过点P且垂直于x轴的直线l平分△OBC的面积?若有,求出点P坐标;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源:湖南省中考真题 题型:解答题

如图,直线OQ的函数解析式为y=x,下表是直线a的函数关系中自变量x与函数y的部分对应值:
x
-1
1
2
3
y
8
4
2
0
设直线a与x轴交点为B,与直线OQ交点为C,动点P(m,0)(0<m<3)在OB上移动,过点P作直线l与x轴垂直。
(1)根据表所提供的信息,请在直线OQ所在的平面直角坐标系中画出直线a的图象,并说明点(10,-10)不在直线a的图象上;
(2)求点C的坐标;
(3)设△OBC中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式;
(4)试问是否存在点P,使过点P且垂直于x轴的直线l平分△OBC的面积?若有,求出点P坐标;若无,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(07)(解析版) 题型:解答题

(2006•湘西州)如图,直线OQ的函数解析式为y=x.
下表是直线a的函数关系中自变量x与函数y的部分对应值.
-1 3
 y 8 4 2 0
设直线a与x轴交点为B,与直线OQ交点为C,动点P(m,0)(0<m<3)在OB上移动,过点P作直线l与x轴垂直.
(1)根据表所提供的信息,请在直线OQ所在的平面直角坐标系中画出直线a的图象,并说明点(10,-10)不在直线a的图象上;
(2)求点C的坐标;
(3)设△OBC中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式;
(4)试问是否存在点P,使过点P且垂直于x轴的直线l平分△OBC的面积?若有,求出点P坐标;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年湖南省湘西州中考数学试卷(解析版) 题型:解答题

(2006•湘西州)如图,直线OQ的函数解析式为y=x.
下表是直线a的函数关系中自变量x与函数y的部分对应值.
-1 3
 y 8 4 2 0
设直线a与x轴交点为B,与直线OQ交点为C,动点P(m,0)(0<m<3)在OB上移动,过点P作直线l与x轴垂直.
(1)根据表所提供的信息,请在直线OQ所在的平面直角坐标系中画出直线a的图象,并说明点(10,-10)不在直线a的图象上;
(2)求点C的坐标;
(3)设△OBC中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式;
(4)试问是否存在点P,使过点P且垂直于x轴的直线l平分△OBC的面积?若有,求出点P坐标;若无,请说明理由.

查看答案和解析>>

同步练习册答案