精英家教网 > 初中数学 > 题目详情
10.如图,已知直线L1∥L2,将等边三角形如图放置,若∠ɑ=40°,则∠β等于20°.

分析 过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.

解答 解:过点A作AD∥l1,如图,
则∠BAD=∠β.
∵l1∥l2
∴AD∥l2
∵∠DAC=∠α=40°.
∵△ABC是等边三角形,
∴∠BAC=60°,
∴∠β=∠BAD=∠BAC-∠DAC=60°-40°=20°.
故答案为20°.

点评 本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA与l2交于点E,运用平行线的性质及三角形外角的性质解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.等腰三角形的两边分别为4和6,则这个三角形的周长是(  )
A.14B.16C.24D.14或16

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在一块菱形菜地ABCD中,对角线AC与BD相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.某班全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中捐款额的中位数是15元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.

(1)试判断BD与AC的位置关系和数量关系,并说明理由;
(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;
(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.
①试猜想BD与AC的数量关系,并说明理由;
②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如果一个三角形的三个内角都相等,那么这个三角形的形状是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①abc>0;②a-b+c>0;③4a+2b+c<0;④2a-3b=0;⑤c-4b>0,其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加(  )
A.1mB.2mC.3mD.6m

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是(  )
A.k<-3B.k>-3C.k<3D.k>3

查看答案和解析>>

同步练习册答案