精英家教网 > 初中数学 > 题目详情

【题目】如图,已知⊙O是以BC为直径的△ABC的外接圆,OP∥AC,且与BC的垂线交于点P,OP交AB于点D,BC、PA的延长线交于点E.
(1)求证:PA是⊙O的切线;
(2)若sinE= ,PA=6,求AC的长.

【答案】
(1)证明:连接OA,如图,

∵AC∥OP,

∴∠ACO=∠POB,∠CAO=∠POA,

又∵OA=OC,

∴∠ACO=∠CAO,

∴∠POA=∠POB,

在△PAO和△PBO中,

∴△PAO≌△PBO(SAS),

∴∠PAO=∠PBO,

又∵PB⊥BC,

∴∠PBO=90°,

∴∠PAO=90°,

∴OA⊥PE,

∴PA是⊙O的切线


(2)解:∵△PAO≌△PBO,

∴PB=PA=6,

在Rt△PBE中,∵sinE= =

= ,解得PE=10,

∴AE=PE﹣PA=4,

在Rt△AOE中,sinE= =

设OA=3t,则OE=5t,

∴AE= =4t,

∴4t=4,解得t=1,

∴OA=3,

在Rt△PBO中,∵OB=3,PB=6,

∴OP= =3

∵AC∥OP,

∴△EAC∽△EPO,

= ,即 =

∴AC=


【解析】(1)先利用平行线的性质得到∠ACO=∠POB,∠CAO=∠POA,加上∠ACO=∠CAO,则∠POA=∠POB,于是可根据“SAS”判断△PAO≌△PBO,则∠PAO=∠PBO=90°,然后根据切线的判定定理即可得到PA是⊙O的切线;(2)先由△PAO≌△PBO得PB=PA=6,在Rt△PBE中,利用正弦的定义可计算PE=10,则AE=PE﹣PA=4,再在Rt△AOE中,由sinE= = ,可设OA=3t,则OE=5t,由勾股定理得到AE=4t,则4t=4,解得t=1,所以OA=3;接着在Rt△PBO中利用勾股定理计算出OP=3 ,然后证明△EAC∽△EPO,再利用相似比可计算出AC.
【考点精析】根据题目的已知条件,利用切线的判定定理的相关知识可以得到问题的答案,需要掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果∠a与∠β的两边分别平行,∠α比∠β3倍少24°,则∠β的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流.

(1)从火车站到码头怎样走最近,画图并说明理由;

(2)从码头到铁路怎样走最近,画图并说明理由;

(3)从火车站到河流怎样走最近,画图并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明(在下面的括号内填上相应的结论或推理的依据):如图,AD⊥BCD,EG⊥BCG,∠E=∠3,

求证:AD∠BAC的平分线

证明:∵AD⊥BC,EG⊥BC(已知)

∴∠4=∠5=90°( )

∴AD∥EG( )

∴∠1=∠E( ) ∠2=∠3( )

∵∠E=∠3(已知)

∴( )=( )

∴AD∠BAC的平分线(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】abcd是互不相等的整数(abcd),且abcd9,则:ac+bd_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,DBC的中点,DEBCCEAD,若 ,求四边形ACEB的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,已知∠BAC45°ADBCDBD2DC3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以ABAC为对称轴,画出ABDACD的轴对称图形,D点的对称点为EF,延长EBFC相交于G点,得到四边形AEGF是正方形.AD=x,利用勾股定理,建立关于x的方程模型,即可求出x的值.参考小萍的思路,探究并解答新问题:如图2,在ABC中,∠BAC30°ADBCDAD4.请你按照小萍的方法画图,得到四边形AEGF,求BGC的周长.(画图所用字母与图1中的字母对应)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】杭绍台高铁项目是国内首批八个社会资本投资铁路示范项目之一,也是中国首个民营控股高速铁路项目.该项目可用批复总投资预计448.9亿元,资本金占总投资的30%,其中民营联合体占股51%,其中448.9亿元用科学记数法表示为_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.
(1)求证:AC是⊙O的切线;
(2)求弦BD的长;
(3)求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案