【题目】如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①PA=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP,正确的是___(填写所有正确结论的序号)
【答案】①②③.
【解析】
①解法一:如图1,作辅助线,构建三角形全等和平行四边形,证明,得BG=PE,再证明四边形ABGP是平行四边形,可得结论;
解法二:如图2,连接AE,利用四点共圆证明△APE是等腰直角三角形,可得结论;
②如图3,作辅助线,证明四边形DCGP是平行四边形,可得结论;
③证明四边形OCGF是矩形,可作判断;
④证明,则,可作判断.
①解法一:如图1,在EF上取一点G,使FG=FP,连接BG、PG,
∵EF⊥BP,
∴∠BFE=90°,
∵四边形ABCD是正方形,
∴∠FBC=∠ABD=45°,
∴BF=EF,
在△BFG和△EFP中,
∵ ,
∴△BFG≌△EFP(SAS),
∴BG=PE,∠PEF=∠GBF,
∵∠ABD=∠FPG=45°,
∴AB∥PG,
∵AP⊥PE,
∴∠APE=∠APF+∠FPE=∠FPE+∠PEF=90°,
∴∠APF=∠PEF=∠GBF,
∴AP∥BG,
∴四边形ABGP是平行四边形,
∴AP=BG,
∴AP=PE;
解法二:如图2,连接AE,∵∠ABC=∠APE=90°,
∴A、B、E、P四点共圆,
∴∠EAP=∠PBC=45°,
∵AP⊥PE,
∴∠APE=90°,
∴△APE是等腰直角三角形,
∴AP=PE,
故①正确;
②如图3,连接CG,由①知:PG∥AB,PG=AB,
∵AB=CD,AB∥CD,
∴PG∥CD,PG=CD,
∴四边形DCGP是平行四边形,
∴CG=PD,CG∥PD,
∵PD⊥EF,
∴CG⊥EF,即∠CGE=90°,
∵∠CEG=45°,
∴;
故②正确;
③如图4,连接AC交BD于O,由②知:∠CGF=∠GFD=90°,
∵四边形ABCD是正方形,
∴AC⊥BD,
∴∠COF=90°,
∴四边形OCGF是矩形,
∴CG=OF=PD,
∴,
故③正确;
④如图4中,在△AOP和△PFE中,
∵ ,
∴△AOP≌△PFE(AAS),
∴,
∴,
故④不正确;
本题结论正确的有:①②③,
故答案为:①②③.
科目:初中数学 来源: 题型:
【题目】某学校数学兴趣小组想利用数学知识测量某座山的海拔高度,如图,他们在山腰A处测得山顶B的仰角为45°,他们从A处沿着坡度为i=1 : 的斜坡前进1000 m到达D处,在D处测得山顶B的仰角为58°,若点A处的海拔为12米,求该座山顶点B处的海拔高度,(结果保留整数,参考数据:tan 58°≈1.60,sin 58°≈0. 85,cos 58°≈0.53,≈1. 732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元。
(1)求购买一个足球、一个篮球各需多少元?
(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx向上平移2个单位之后,正好与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求平移后抛物线的表达式;
(2)点Q是直线AC上方的抛物线上一点,过点Q作QE垂直于x轴,若以点B、Q、E为顶点的角形与△AOC相似,请求出Q点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.
(1)求证:DE与⊙O相切;
(2)若CD=BF,AE=3,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交舡于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2) 求证: ;
(3)若AG=6,EG=2,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系内,的三个顶点的分别为,,(正方形网格中每个小正方形的边长是一个单位长度).
(1)在网格内画出向下平移2个单位长度得到的,点的坐标是________;
(2)以点为位似中心,在网格内画出,使与位似,且位似比为,点的坐标是________;
(3)的面积是________平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
(1)设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)
(2)每件童装降价多少元时,平均每天赢利1200元.
(3)要想平均每天赢利2000元,可能吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com