精英家教网 > 初中数学 > 题目详情
如图1,已知长方体的长为BC=2cm,宽AC=1cm,高AA′=4cm.
(1)一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?
(2)如图2,若在长方体的表面A′B′C′D′上放一个底面圆最大的圆锥体,且圆锥底面在四边形A′B′C′D′内,设圆心为O,试判断∠A′0C′的度数范围.(不要求计算过程)

【答案】分析:(1)要求长方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.
(2)要保证底面圆最大,必须使得圆与长方形的两条长边相切,分圆与A′C′相切、圆与B′D′相切两种情况求得∠A′0C′的度数范围.
解答:
解:(1)根据题意,如下图所示,最短路径有以下三种情况:
①沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25,
②沿AC,CC′,C′B′,B′D′,D'A',A′A剪开,得图(2)AB′2=AC2+B′C2=12+(4+2)2=37,
③沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=22+(4+1)2=29,
综上所述,最短路径应为(1)所示,
所以AB′2=25,
即AB′=5cm,
答:最短路径为(1)所示5cm;

(2)要保证底面圆最大,必须使得圆与长方形的两条长边相切,则此时圆的半径长为
当圆与A′C′相切时,∠A′0C′最大,此时为90°;
当圆与B′D′相切时,E为切点,∠A′0C′最小,此时,A′E=,OE=,tan∠A′0E=
所以∠A′0E≈18.4°,∠A′0C′≈36.8°,
∠A′OC′的度数范围为36.8°≤∠A′OC′≤90°.
点评:考查了平面展开-最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.同时考查了切线的性质和分类思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是
65

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知长方体的长,宽,高分别为3cm,4cm,12cm,在其中放入一根细棒,则细棒的最大长度可以是
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图1,已知长方体的长为BC=2cm,宽AC=1cm,高AA′=4cm.
(1)一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?
(2)如图2,若在长方体的表面A′B′C′D′上放一个底面圆最大的圆锥体,且圆锥底面在四边形A′B′C′D′内,设圆心为O,试判断∠A′0C′的度数范围.(不要求计算过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,已知长方体的长为BC=2cm,宽AC=1cm,高AA′=4cm.
(1)一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?
(2)如图2,若在长方体的表面A′B′C′D′上放一个底面圆最大的圆锥体,且圆锥底面在四边形A′B′C′D′内,设圆心为O,试判断∠A′0C′的度数范围.(不要求计算过程)

查看答案和解析>>

同步练习册答案