精英家教网 > 初中数学 > 题目详情

直线y=x+2与抛物线y=x2+2x的交点坐标是


  1. A.
    (1,3)
  2. B.
    (-2,0)
  3. C.
    (1,3)或(-2,0)
  4. D.
    以上都不是
C
分析:本题可联立两函数的解析式,所得方程组的解,即为两函数的交点坐标.
解答:根据题意,得

解得,
则直线y=x+2与抛物线y=x2+2x的交点坐标是(1,3),(-2,0).
故选C.
点评:本题主要考查了函数图象交点的求法,函数图象交点坐标为两函数解析式组成的方程组的解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网有一个抛物线形的桥洞,桥洞离水面的最大高度BM为3米,跨度OA为6米,以OA所在直线为x轴,O为原点建立直角坐标系(如图所示).
(1)请你直接写出O、A、M三点的坐标;
(2)一艘小船平放着一些长3米、宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,宜昌西陵长江大桥属于抛物线形悬索桥,桥面(视为水平的)与主悬钢索之间用垂直钢拉索连接.桥两端主塔塔顶的海拔高度均是187.5米,桥的单孔跨度(即两主塔之间的距离)900米,这里水面的海拔高度是74米.若过主塔塔顶的主悬钢索(视为抛物线)最低点离桥面(视为直线)的高度为0.5米,桥面离水面的高度为19米.请你计算距离桥两端主塔100米处垂直钢拉索的长.(结果精确到0.1米)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A精英家教网,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作⊙A.
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D,E分别是矩形OABC中AB和BC边上的中点,点B的坐标为(6,4)
(1)写出A,C,E,D四点的坐标;并判断点O到直线DE的距离是否等于线段的OE长;
(2)动点F在线段DE上,FG⊥x轴于G,FH⊥y轴于H,求矩形面积最大时点F的坐标(利用图1解答);
(3)我们给出如下定义:分别过抛物向上的两点(不在x轴上)作x轴的垂线,如果以这两点及垂足为顶点的矩形在这条抛物线与x轴围成的封闭图形内部,则称这个矩形是这条抛物线的内接矩形,请你理解上述定义,解答下面的问题:若矩形OABC是某个抛物线的周长最大的内接矩形,求这个抛物线的解析式(利用图2解答).
精英家教网

查看答案和解析>>

科目:初中数学 来源:2011-2012学年广西省贵港市九年级第一次教学质量监测数学卷 题型:解答题

(本题满分12分)

如图所示,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧), 已知点坐标为().

 

 

 

 

 

 

 

(1)求此抛物线的解析式;

(2)过点作线段的垂线交抛物线于点

如果以点为圆心的圆与直线相切,请判断抛物

线的对称轴与⊙有怎样的位置关系,并给出证明;

(3)已知点是抛物线上的一个动点,且位于

两点之间,问:当点运动到什么位置时,

面积最大?并求出此时点的坐标和的最大面积.

 

查看答案和解析>>

同步练习册答案