【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与直线y=x﹣3交于点A(3,0)和点B(﹣2,n),与y轴交于点C.
(1)求出抛物线的函数表达式;
(2)在图1中,平移线段AC,点A、C的对应点分别为M、N,当N点落在线段AB上时,M点也恰好在抛物线上,求此时点M的坐标;
(3)如图2,在(2)的条件下,在抛物线上是否存在点P(不与点A重合),使△PMC的面积与△AMC的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+2x+3;(2)M点坐标为(4,﹣2);(3)P点坐标为(,)或(,)或(,).
【解析】
(1)先利用直线解析式确定B(﹣2,﹣5),然后利用待定系数法求抛物线解析式;
(2)解方程组﹣x2+2x+3=0得A(3,0),易得C(0,3),设N(t,t﹣3),利用点利用的规律当点N先向下平移3个单位,再向右平移3个单位得到点M,则M(t+3,t﹣6),把M(t+3,t﹣6)代入y=﹣x2+2x+3得t﹣6=﹣(t+3)2+2(t+3)+3,当点N先向上平移3个单位,再向左平移3个单位得到点M,则M(t﹣3,t),把M(t﹣3,t)代入y=﹣x2+2x+3得t=﹣(t﹣3)2+2(t﹣3)+3,然后解方程求出t得到满足条件的M点坐标;
(3)利用待定系数法求出直线MC的解析式为y=﹣x+3,利用AP∥MC可设AP的解析式为y=﹣x+p,则AP的解析式为y=﹣x+,通过解方程组得此时P点坐标;再利用平移的方法得到再直线CM下方得到直线y=﹣x+到直线CM的距离等于直线y=﹣x+到直线CM的距离相等,然后解方程得此时P点坐标.
(1)把(﹣2,n)代入y=x﹣3得n=﹣2﹣3=﹣5,则B(﹣2,﹣5),
把A(3,0),B(﹣2,﹣5)代入得,解得,
∴抛物线解析式为y=﹣x2+2x+3;
(2)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(3,0),
当x=0时,y=﹣x2+2x+3=3,则C(0,3)
设N(t,t﹣3),
∵AC平移得到MN,
∴AC∥MN,AC=MN,
而点C先向下平移3个单位,再向右平移3个单位得到点A,
当点N先向下平移3个单位,再向右平移3个单位得到点M,则M(t+3,t﹣6),
把M(t+3,t﹣6)代入y=﹣x2+2x+3得t﹣6=﹣(t+3)2+2(t+3)+3,解得t1=1,t2=﹣6,
∴M点的坐标为(4,﹣5),(﹣3,﹣12)(舍去)
当点N先向上平移3个单位,再向左平移3个单位得到点M,则M(t﹣3,t),
把M(t﹣3,t)代入y=﹣x2+2x+3得t=﹣(t﹣3)2+2(t﹣3)+3,解得t1=3(舍去),t2=4,
∴M点的坐标为(﹣1,4)(舍去),
综上所述,M点坐标为(4,﹣2);
(3)设直线CM的解析式为y=mx+n,
把C(0,3),M(4,﹣2)代入得,
∴直线MC的解析式为y=﹣x+3,
∵△PMC的面积与△AMC的面积相等,
∴AP∥MC,
设AP的解析式为y=﹣x+p,
把A(3,0)代入得p=,
∴AP的解析式为y=﹣x+,
解方程组得或,此时P点坐标为(,);
直线AP的解析式为y=﹣x+与y轴的交点坐标为(0,),
∵﹣3=,
把直线CM向下平移个单位得到y=﹣x+,
解方程得或,此时P点坐标为(),(),
综上所述,P点坐标为(,)或()或().
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数和反比例函数的图象都经过点A(﹣3,﹣3).
(1)求正比例函数和反比例函数的表达式;
(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m的值和直线BC的表达式;
(3)在(2)的条件下,直线BC与y轴交于点D,求以点A,B,D为顶点的三角形的面积;
(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是( )
A. 7海里 B. 14海里 C. 7海里 D. 14海里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD⊥CE 于点 D,AC 平分∠DAB.
(1) 求证:直线 CE 是⊙O 的切线;
(2) 若 AB=10,CD=4,求 BC 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△BOA与Rt△COA的斜边在x轴上,BA=6,A(10,0),AC与OB相交于点E,且CA=CO,连接BC,下列判断一定正确的是( )
①△ABE∽△OCE;②C(5,5);③BC=;④S△ABC=3.
A. ①③ B. ②④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,点P在BC上.若点P为BC的中点,则m=AP2+BPPC的值为多少?若BC边上有100个不同的点P1,P2,…,P100,且mi=APi2+BPiPiC(i=1,2,…,100),则m=m1+m2+…+m100 的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
(1)求一次函数和反比例函数解析式.
(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
(3)根据图象,直接写出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰三角形ABC,CA=CB=6cm,AB=8cm,点O为△ABC内一点(点O不在△ABC边界上).请你运用图形旋转和“两点之间线段最短”等数学知识、方法,求出OA+OB+OC的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BC为⊙O的直径,点A是弧BC的中点,连接BA并延长至点D,使得AD=AB,连接CD,点E为CD上一点,连接BE交弧BC于点F,连接AF.
(1)求证:CD为⊙O的切线;
(2)求证:∠DAF=∠BEC;
(3)若DE=2CE=4,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com