分析 设AC=x,BC=4-x,根据等腰直角三角形性质,得出CD=$\frac{\sqrt{2}}{2}$x,CE=$\frac{\sqrt{2}}{2}$(4-x),根据勾股定理然后用配方法即可求解.
解答 解:设AC=x,BC=4-x,
∵△CD,△BCE均为等腰直角三角形,
∴CD=$\frac{\sqrt{2}}{2}$x,CE=$\frac{\sqrt{2}}{2}$(4-x),
∵∠ACD=45°,∠BCE=45°,
∴∠DCE=90°,
∴DE2=CD2+CE2=$\frac{1}{2}$x2+$\frac{1}{2}$(4-x)2=x2-4x+8=(x-2)2+4,
∵根据二次函数的最值,
∴当x取2时,DE取最小值,最小值为:2.
故答案为:2
点评 本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com