精英家教网 > 初中数学 > 题目详情
16.如图,已知,在△ABC中,∠C=90°,AC=AE,DE⊥AB于点E,且∠CDA=50°,则∠BDE的度数为(  )
A.40°B.50°C.10°D.80°

分析 利用HL得到直角三角形ACD与直角三角形AED全等,利用全等三角形对应角相等得到∠ADC=∠ADE,求出∠CDE的度数,即可求出∠BDE的度数.

解答 解:∵DE⊥AB,
∴∠C=∠AED=90°,
在Rt△ACD和Rt△AED中,
$\left\{\begin{array}{l}{AD=AD}\\{AC=AE}\end{array}\right.$,
∴△ACD≌△AED(HL),
∴∠EDA=∠CDA=50°,
∴∠BDE=180°-∠ADC-∠EDA=80°,
故选D.

点评 本题考查了全等三角形的判定与性质、平角的定义等知识,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,B,C,E三点在一条直线上,△ABC和△DCE均为等边三角形,连接AE,DB.
(1)AE和DB有何大小关系,请说明理由;
(2)如果把△DCE绕点C顺时针再旋转一个角度,(1)中的结论还成立吗?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图所示,∠B=67°,∠ACB=74°,∠AED=48°,则∠BDF=87°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在⊙O中,半径OA、OB互相垂直,点C为弧$\widehat{AB}$上一点(不与A、B重合),CD⊥OA,CE⊥OB,垂足分别为D、E.点G、H分别在CE、CD上,且CG=$\frac{1}{3}$CE,CH=$\frac{1}{3}$CD,当C点在弧$\widehat{AB}$上运动时,GH的长度(  )
A.逐渐变大B.逐渐变小C.不变D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在△ABC中,中线BE、CD相交于点G,则$\frac{DE}{BC}$=$\frac{1}{2}$;S△DEG:S△ABC=1:12.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图点P和P1关于直线n轴对称,点P和P2关于直线m轴对称,连结P1P2交m于点A,交n于点B,连结PA和PB,若△PAB的周长为10,则P1P2=10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为点E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.
(1)探索AB与BF的数量关系,说明理由.
(2)若BF=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.长为2,宽为a的长方形纸片(1<a<2),如图所示的方法折叠,剪下折叠所得的正方形纸片(称为第一次操作);再把剩下的长方形用同样的方法折叠,剪下折叠所得的正方形纸片(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的纸片为正方形,则操作终止.当n=3时,a的值为$\frac{6}{5}$或$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.已知点A(-4,y1),B(2,y2)都在双曲线y=$\frac{k}{x}$(k>0)上,则y1、y2大小关系是(  )
A.y1>y2B.y1=y2C.y1<y2D.不能比较

查看答案和解析>>

同步练习册答案