精英家教网 > 初中数学 > 题目详情
(2002•黄冈)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断中不正确的是( )

A.abc>0
B.b2-4ac>0
C.2a+b>0
D.4a-2b+c<0
【答案】分析:由二次函数y=ax2+bx+c的图象开口向上可以得到a的取值,与y轴交点在负半轴可得到c的取值,对称轴x=->0可得到b的取值,然后即可判定A是否正确;由于图象与y轴有两个交点可以推出b2-4ac>0,由此可以判定B正确;由0<-<1可得-2a<b<0,a<0,由此可以判定C正确;用排除法可知D错误.
解答:解:∵二次函数y=ax2+bx+c的图象开口向上,
∴a>0,
∵与y轴交点在负半轴,
∴c<0,
∵对称轴x=->0,
∴b<0,
∴abc>0,
所以A正确;
∵图象与y轴有两个交点,
∴b2-4ac>0,
所以B正确;
由0<-<1可得-2a<b<0,a>0,
故2a+b>0,C正确.
用排除法可知D错误.
故选D.
点评:解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2002•黄冈)已知:如图,抛物线c1经过A,B,C三点,顶点为D,且与x轴的另一个交点为E.
(1)求抛物线c1解析式;
(2)求四边形ABDE的面积;
(3)△AOB与△BDE是否相似,如果相似,请予以证明;如果不相似,请说明理由;
(4)设抛物线c1的对称轴与x轴交于点F,另一条抛物线c2经过点E(抛物线c2与抛物线c1不重合),且顶点为M(a,b),对称轴与x轴相交于点G,且以M,G,E为顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源:2002年湖北省黄冈市中考数学试卷(解析版) 题型:解答题

(2002•黄冈)已知:如图,抛物线c1经过A,B,C三点,顶点为D,且与x轴的另一个交点为E.
(1)求抛物线c1解析式;
(2)求四边形ABDE的面积;
(3)△AOB与△BDE是否相似,如果相似,请予以证明;如果不相似,请说明理由;
(4)设抛物线c1的对称轴与x轴交于点F,另一条抛物线c2经过点E(抛物线c2与抛物线c1不重合),且顶点为M(a,b),对称轴与x轴相交于点G,且以M,G,E为顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(05)(解析版) 题型:解答题

(2002•黄冈)已知:如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明成立(不要求考生证明).
若将图中的垂线改为斜交,如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD于点F,则:
(1)还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(2)请找出S△ABD,S△BED和S△BDC间的关系式,并给出证明.


查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(01)(解析版) 题型:选择题

(2002•黄冈)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断中不正确的是( )

A.abc>0
B.b2-4ac>0
C.2a+b>0
D.4a-2b+c<0

查看答案和解析>>

同步练习册答案