分析 根据菱形的性质得出∠BCE=∠DCE,BC=CD,AB∥CD,推出∠AFD=∠CDE,证△BCE≌△DCE,推出∠CBE=∠CDE即可.
解答 证明:∵四边形ABCD是菱形,
∴∠BCE=∠DCE,BC=CD,AB∥CD,
∴∠AFD=∠CDE,
在△BCE和△DCE中
$\left\{\begin{array}{l}{BC=CD}\\{∠BCE=∠DCE}\\{CE=CE}\end{array}\right.$,
∴△BCE≌△DCE(SAS),
∴∠CBE=∠CDE,
∵∠AFD=∠CDE,
∴∠AFD=∠CBE.
点评 此题主要考查了菱形的判定与性质以及全等三角形的判定与性质等知识,得出△BCE≌△DCE是解题关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 存在三角形使得p=1或p=2 | B. | 0<p<1 | ||
C. | 1<p<2 | D. | 2<p<3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com