精英家教网 > 初中数学 > 题目详情

如图,AD是△ABC的角平分线,过点D作DE∥AB,DF∥AC,分别交AC、AB于点E和F.

1.在图中画出线段DE和DF;

2.连接EF,则线段AD和EF互相垂直平分,这是为什么?

 

【答案】

 

1.见解析

2.见解析

【解析】(1)根据题意作图

(2)通过已知证得平行四边形AEDF是菱形,即可得出结论

解(1)如图所示;

(2)∵DE∥AB,DF∥AC,

∴四边形AEDF是平行四边形,

∵AD是△ABC的角平分线,

∴∠FAD=∠EAD,

∵AB∥DE,

∴∠FAD=∠EDA,

∴∠EAD=∠EDA,

∴EA=ED,

∴平行四边形AEDF是菱形,

∴AD与EF互相垂直平分.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案