精英家教网 > 初中数学 > 题目详情
某市为落实房地产调控政策,加快了廉租房的建设力度.第一年投资2亿元人民币建设了廉租房8万平方米,累计连续三年共投资9.5亿元人民币建设廉租房.设每年投资的增长率均为x.
(1)求每年投资的增长率;
(2)若每年建设成本不变,求第三年建设了多少万平方米廉租房.
考点:一元二次方程的应用
专题:增长率问题
分析:(1)设每年市政府投资的增长率为x.根据到2012年底三年共累计投资9.5亿元人民币建设廉租房,列方程求解;
(2)先求出单位面积所需钱数,再用累计投资×单位面积所需钱数可得结果.
解答:解:(1)依题意,得2+2(1+x)+2(1+x)2=9.5,
整理得:2x2+6x-3.5=0,
解得x1=0.5=50%,x2=-3.5(不合题意舍去).
答:每年投资的增长率为50%.

(2)2(1+50%)2×4=18(万平方米).
答:第三年建设了18万平方米廉租房.
点评:主要考查了一元二次方程的实际应用,本题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上.
(1)若随机地抽取一张,则抽到数字恰好为1的概率是
 

(2)请你通过列表或画树状图分析:先随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求组成的两位数能被4整除的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点B、E、C、F在一条直线上,BC=EF,AB∥DE,∠A=∠D.请判断AC与DF的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

老王是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产出情况如表:
鱼苗投资
(百元)
饲料支出
(百元)
收获成品鱼
(千克)
成品鱼价格
(百元/千克)
A种鱼 2 3 100 0.1
B种鱼 4 5 55 0.4
(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)
(1)按目前市场行情,老王养殖A、B两种淡水鱼获得利润最多是多少万元?
(2)基础建设投入、鱼苗投资、饲料支出及产量不变,但当老王的鱼上市时,A种鱼价格上涨a%,B种鱼价格下降20%,使老王养鱼实际获得利润5.68万元.求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

一张纸上有一个圆.

(1)如图①,请用尺规作图,作出圆的圆心(保留作图痕迹,不写作法和证明);
(2)如图②,若不用尺规作图,你还有其它作法吗?请说明作法(不作图);
(3)如图③,⊙O表示一个圆形工件,图中标注了有关尺寸,并且MB:MA=1:4,求工件半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:|a+2|+(b-
1
4
)2=0
,求(a2b-2ab)-(3ab2+4ab)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

一根铁丝,第一次用去它的一半少1m,第二次用去剩下的一半多1m,结果还剩下3m.求这根铁丝原来有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知代数式x+2y的值是6,则代数式3x+6y+1的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若点(a,b)在第四象限内,则直线y=ax+b不经过第
 
象限,函数值y随着x的增大而
 

查看答案和解析>>

同步练习册答案