分析 设S△BDE=x,则可得出△ABE△BCE的面积之比,再将x的值代入即可得出答案.
解答 解:(1)设S△BDE=x.
∵$\frac{{S}_{△ADE}}{{S}_{△BDE}}$=$\frac{AD}{BD}$,$\frac{{S}_{△ABE}}{{S}_{△BCE}}$=$\frac{AE}{CE}$,
∵DE∥BC,
∴$\frac{AD}{DB}=\frac{AE}{CE}$,
∵S△ADE=3,S△BCE=18,
∴$\frac{{S}_{△ADE}}{{S}_{△BDE}}$=$\frac{{S}_{△ABE}}{{S}_{△BCE}}$,
∴$\frac{3}{x}$=$\frac{3+x}{18}$,
解得:x1=-9(舍),x2=6.
∴S△BDE=6;
故答案为:6.
点评 本题考查了平行线分线段成比例定理,三角形的面积,熟练掌握平行线分线段成比例定理是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1cm | B. | 5cm | C. | 1cm或5cm | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com