【题目】如图,已知AB是⊙O的直径,点H在⊙O上,E是 的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.
(1)求证:CE是⊙O的切线;
(2)若FB=2,tan∠CAE= ,求OF的长.
【答案】
(1)
证明:连接OE,
∵点E为弧HB的中点,
∴∠1=∠2,
∵OE=OA,
∴∠3=∠2,
∴∠3=∠1,
∴OE∥AC,
∵AC⊥CE,
∴OE⊥CE,
∵点E在⊙O上,
∴CE是⊙O的切线
(2)
解:连接EB,
∵AB是⊙O的直径,
∴∠AEB=90°,
∵EF⊥AB于点F,
∴∠AFE=∠EFB=90°,
∴∠2+∠AEF=∠4+∠AEF=90°,
∴∠2=∠4=∠1.
∵tan∠CAE= ,
∴tan∠4= ,
在Rt△EFB中,∠EFB=90°,FB=2,tan∠4= ,
∴EF= ,
在Rt△AEF中,tan∠2= ,EF=2 ,
∴AF=4,
∴AB=AF+EF=6,
∴OB=3,
∴OF=OB﹣BF=1.
【解析】(1)连接OE,由于点E为弧HB的中点,根据圆周角定理可知∠1=∠2,而OA=OE,那么∠3=∠2,于是∠1=∠3,根据平行线的判定可知OE∥AC,而AC⊥CE,根据平行线的性质易知∠OEC=90°,即OE⊥CE,根据切线的判定可知CE是⊙O的切线;(2)由于AB是直径,那么∠AEB=90°,而EF⊥AB,易知∠1=∠2=∠4,那么tan∠1=tan∠2=tan∠4= ,在Rt△EFB中,利用正切可求EF,同理在Rt△AEF中,也可求AF,那么直径AB=6,从而可知半径OB=3,进而可求OF.
【考点精析】认真审题,首先需要了解平行线的判定与性质(由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AB∥DC , ∠B=90°,E为BC上一点,且AE⊥ED . 若BC=12,DC=7,BE:EC=1:2,
(1)求AB的长.
(2)求△AED的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.
(1)求证:四边形ABCD是菱形;
(2)过点A作AH⊥BC于点H,求AH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰直角三角形ABC中,AB=AC,∠BAC=90°.点P为直线AB上一个动点(点P不与点A,B重合),连接PC,点D在直线BC上,且PD=PC.过点P作PE^PC,点D,E在直线AC的同侧,且PE=PC,连接BE.
(1)情况一:当点P在线段AB上时,图形如图1 所示;
情况二:如图2,当点P在BA的延长线上,且AP<AB时,请依题意补全图2;.
(2)请从问题(1)的两种情况中,任选一种情况,完成下列问题:
①求证:∠ACP=∠DPB;
②用等式表示线段BC,BP,BE之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2﹣2x﹣3,当x=4时,f(4)=42﹣2×4﹣3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2﹣2x﹣3的图象如图1所示.
观察可知:f(﹣2)>0,f(1)<0,则f(﹣2).f(1)<0.所以函数f(x)=x2﹣2x﹣3在﹣2≤x≤1范围内有零点.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零点,﹣1也是方程x2﹣2x﹣3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是 .
(2)已知函数y2=f(x)=﹣ 的零点为x1 , x2 , 且x1<1<x2 .
①求零点为x1 , x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1 , x2 , 点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了更好地贯彻落实国家关于“强化体育课和课外锻炼,促进青少年身心健康、体魄强健”的精神,某校大力开展体育活动.该校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:
(1)求该班学生人数;
(2)请你补全条形图;
(3)求跳绳人数所占扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)判断∠ABE与∠ACD的数量关系,并说明理由;
(2)求证:过点A、F的直线垂直平分线段BC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com