【题目】两个大小不同的等腰直角三角尺如图1所示放置,图2是由它抽象出的几何图形,点,,在同一条直线上,连接.
(1)请找出图2中与全等的三角形,并说明理由(说明:结论中不得含有未标识的字母);
(2)判断线段与是否垂直,并说明理由.
【答案】(1)△ABE≌△ACD,理由见解析;(2)DC⊥BE,理由见解析.
【解析】
(1)根据角的和差关系可得∠BAE=∠CAD,利用SAS即可证明△ABE≌△ACD,即可得答案.
(2)根据等腰直角三角形的性质可得∠B=∠ACB=45°,由(1)可得△ABE≌△ACD,根据全等三角形的性质可得∠ACD=∠B=45°,即可求出∠BCD=90°,即可证明DC⊥BE,可得答案.
(1)△ABE≌△ACD,理由如下:
∵△ABC和△ADE是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=90°,
∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,
在△ABE和△ACD中,,
∴△ABE≌△ACD.
(2)DC⊥BE,理由如下:
∵△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
由(1)得:△ABE≌△ACD,
∴∠ACD=∠B=45°,
∴∠ACB+∠ACD=45°+45°=90°,
∴DC⊥BE.
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象与直线y=x+m交于x轴上一点A(-1,0),二次函数图象的顶点为C(1,-4).
(1)求这个二次函数的解析式;
(2)若二次函数的图象与x轴交于另一点B,与直线y=x+m交于另一点D,求 △ABD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA、PB切⊙O于A、B,点C在弧AB上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古埃及人用下面的方法得到直角三角形,把一根长绳打上等距离的13个结(12段),然后用桩钉钉成一个三角形,如图1,其中∠C便是直角.
(1)请你选择古埃及人得到直角三角形这种方法的理由 (填A或B)
A.勾股定理:在直角三角形边的两直角边的平方和等于斜边的平方
B.勾股定理逆定理:如果三角形的三边长a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形
(2)如果三个正整数a、b、c满足a2+b2=c2,那么我们就称 a、b、c是一组勾股数,请你写出一组勾股数
(3)仿照上面的方法,再结合上面你写出的勾股数,你能否只用绳子,设计一种不同于上面的方法得到一个直角三角形(在图2中,只需画出示意图.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个晾衣架放置在水平地面上,在其示意图中,支架OA、OB的长均为100cm,支架OA与水平晾衣架OC的夹角∠AOC为59°,则支架两个着地点之间的距离AB为_____cm.
(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,D在边AC上,且.
如图1,填空______,______
如图2,若M为线段AC上的点,过M作直线于H,分别交直线AB、BC与点N、E.
求证:是等腰三角形;
试写出线段AN、CE、CD之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;
(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,∠ABC=60°,BD平分∠ADC.
(1)试说明△ABC是等边三角形;
(2)若AD=2,DC=4,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张大伯计划建一个面积为72平方米的矩形养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙(墙长15米),另外的部分(包括中间的隔墙)用30米的竹篱笆围成,如图.
(1)请你通过计算帮助张大伯设计出围养鸡场的方案.
(2)在上述条件不变的情况下,能围出比72平方米更大的养鸡场吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com